Package weka.core

Examples of weka.core.Option


  Utils.checkForRemainingOptions(args);
      } catch (Exception e) {
  System.err.println("Options for weka.experiment.InstanceQuery:\n");
  Enumeration en = iq.listOptions();
  while (en.hasMoreElements()) {
    Option o = (Option)en.nextElement();
    System.err.println(o.synopsis()+"\n"+o.description());
  }
  System.exit(1);
      }
    
      Instances aha = iq.retrieveInstances();
View Full Code Here


    Enumeration enu = super.listOptions();
    while (enu.hasMoreElements()) {
      newVector.addElement(enu.nextElement());
    }

    newVector.addElement(new Option(
              "\tName of a directory to search for cost files when loading\n"
              +"\tcosts on demand (default current directory).",
              "D", 1, "-D <directory>"));

    return newVector.elements();
View Full Code Here

   */ 
  public Enumeration listOptions() {
   
    Vector<Option> result = new Vector<Option>();
   
    result.add(new Option(
  "\tEnables debug output.\n"
  + "\t(default: off)",
  "D", 0, "-D"));
   
    result.add(new Option(
  "\tStores the filename in an additional attribute.\n"
  + "\t(default: off)",
  "F", 0, "-F"));
   
    result.add(new Option(
  "\tThe directory to work on.\n"
  + "\t(default: current directory)",
  "dir", 0, "-dir <directory>"));
   
    result.add(new Option("\tThe character set to use, e.g UTF-8.\n\t" +
        "(default: use the default character set)", "charset", 1,
        "-charset <charset name>"));
   
    return  result.elements();
  }
View Full Code Here

    + "\n"
    + "Options:\n");

      Enumeration enm = ((OptionHandler) new TextDirectoryLoader()).listOptions();
      while (enm.hasMoreElements()) {
  Option option = (Option) enm.nextElement();
  System.err.println(option.synopsis());
  System.err.println(option.description());
      }
     
      System.err.println();
    }
  }
View Full Code Here

   */
  public Enumeration listOptions() {

    Vector newVector = new Vector(4);

    newVector.addElement(new Option(
       "\tThe full class name of the classifier.\n"
        +"\teg: weka.classifiers.bayes.NaiveBayes",
       "W", 1,
       "-W <class name>"));
    newVector.addElement(new Option(
       "\tThe index of the class for which IR statistics\n" +
       "\tare to be output. (default 1)",
       "C", 1,
       "-C <index>"));
    newVector.addElement(new Option(
       "\tThe index of an attribute to output in the\n" +
       "\tresults. This attribute should identify an\n" +
             "\tinstance in order to know which instances are\n" +
             "\tin the test set of a cross validation. if 0\n" +
             "\tno output (default 0).",
       "I", 1,
       "-I <index>"));
    newVector.addElement(new Option(
       "\tAdd target and prediction columns to the result\n" +
             "\tfor each fold.",
       "P", 0,
       "-P"));

    if ((m_Template != null) &&
  (m_Template instanceof OptionHandler)) {
      newVector.addElement(new Option(
       "",
       "", 0, "\nOptions specific to classifier "
       + m_Template.getClass().getName() + ":"));
      Enumeration enu = ((OptionHandler)m_Template).listOptions();
      while (enu.hasMoreElements()) {
View Full Code Here

          "missing";
   

    FastVector newVector = new FastVector(11);

    newVector.addElement(new Option(string1, "N", 1,
            "-N <required number of rules output>"));
    newVector.addElement(new Option(stringType, "T", 1,
            "-T <0=confidence | 1=lift | "
            +"2=leverage | 3=Conviction>"));
    newVector.addElement(new Option(string2, "C", 1,
            "-C <minimum metric score of a rule>"));
    newVector.addElement(new Option(string3 + string4, "D", 1,
            "-D <delta for minimum support>"));
    newVector.addElement(new Option("\tUpper bound for minimum support. "
            +"(default = 1.0)", "U", 1,
             "-U <upper bound for minimum support>"));
    newVector.addElement(new Option(string5, "M", 1,
            "-M <lower bound for minimum support>"));
    newVector.addElement(new Option(string6 + string7, "S", 1,
            "-S <significance level>"));
    newVector.addElement(new Option(string8, "I", 0,
            "-I"));
    newVector.addElement(new Option("\tRemove columns that contain "
            +"all missing values (default = no)"
            , "R", 0,
            "-R"));
    newVector.addElement(new Option("\tReport progress iteratively. (default "
            +"= no)", "V", 0,
            "-V"));
    newVector.addElement(new Option(string9, "A", 0,
            "-A"));
    newVector.addElement(new Option(stringZeroAsMissing, "Z", 0,
        "-Z"));
    newVector.addElement(new Option(string10, "c", 1,
            "-c <the class index>"));
   
    return newVector.elements();
  }
View Full Code Here

   */
  public Enumeration listOptions() {
   
    Vector newVector = new Vector();

    newVector.addElement(new Option(
  "\tNumber of trees to build.",
  "I", 1, "-I <number of trees>"));
   
    newVector.addElement(new Option(
  "\tNumber of features to consider (<1=int(logM+1)).",
  "K", 1, "-K <number of features>"));
   
    newVector.addElement(new Option(
  "\tSeed for random number generator.\n"
  + "\t(default 1)",
  "S", 1, "-S"));

    newVector.addElement(new Option(
  "\tThe maximum depth of the trees, 0 for unlimited.\n"
  + "\t(default 0)",
  "depth", 1, "-depth <num>"));

    Enumeration enu = super.listOptions();
View Full Code Here

   */
  public Enumeration listOptions() {

    Vector newVector = new Vector(1);

    newVector.addElement(new Option(
       "\tThe full class name of the classifier.\n"
        +"\teg: weka.classifiers.bayes.NaiveBayes",
       "W", 1,
       "-W <class name>"));

    if ((m_Template != null) &&
  (m_Template instanceof OptionHandler)) {
      newVector.addElement(new Option(
       "",
       "", 0, "\nOptions specific to classifier "
       + m_Template.getClass().getName() + ":"));
      Enumeration enu = ((OptionHandler)m_Template).listOptions();
      while (enu.hasMoreElements()) {
View Full Code Here

   */
  public Enumeration listOptions() {

    Vector newVector = new Vector(5);

    newVector.addElement(new Option(
              "\tChoose attribute to be used for selection.",
              "C", 1, "-C <num>"));
    newVector.addElement(new Option(
              "\tNumeric value to be used for selection on numeric\n"+
        "\tattribute.\n"+
        "\tInstances with values smaller than given value will\n"+
              "\tbe selected. (default 0)",
              "S", 1, "-S <num>"));
    newVector.addElement(new Option(
              "\tRange of label indices to be used for selection on\n"+
        "\tnominal attribute.\n"+
        "\tFirst and last are valid indexes. (default all values)",
              "L", 1, "-L <index1,index2-index4,...>"));
    newVector.addElement(new Option(
        "\tMissing values count as a match. This setting is\n"+
              "\tindependent of the -V option.\n"+
              "\t(default missing values don't match)",
              "M", 0, "-M"));
    newVector.addElement(new Option(
        "\tInvert matching sense.",
              "V", 0, "-V"));
    newVector.addElement(new Option(
        "\tWhen selecting on nominal attributes, removes header\n"
        + "\treferences to excluded values.",
              "H", 0, "-H"));

    return newVector.elements();
View Full Code Here

   */
  public Enumeration listOptions() {

    Vector newVector = new Vector(2);

    newVector.addElement(new Option(
              "\tNumber of execution slots.\n"
              + "\t(default 1 - i.e. no parallelism)",
              "num-slots", 1, "-num-slots <num>"));

    Enumeration enu = super.listOptions();
View Full Code Here

TOP

Related Classes of weka.core.Option

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.