Package weka.core

Examples of weka.core.Option


    Enumeration en = super.listOptions();
    while (en.hasMoreElements())
      result.addElement(en.nextElement());

    result.addElement(new Option(
                                 "\tThe file name of the file that holds the kernel matrix.\n"
                                 + "\t(default: kernelMatrix.matrix)",
                                 "M", 1, "-M <file name>"));

    return result.elements();
View Full Code Here


   * @return an enumeration of all the available options.
   */
  public Enumeration listOptions() {
    Vector result = new Vector();
   
    result.addElement(new Option(
  "\tThe epsilon parameter in epsilon-insensitive loss function.\n"
  + "\t(default 1.0e-3)",
  "L", 1, "-L <double>"));
   
//  result.addElement(new Option(
//      "\tLoss type (L1, L2, Huber, Epsilon insensitive loss)\n",
//      "L", 1, "-L [L1|L2|HUBER|EPSILON]"));
   
    result.addElement(new Option(
  "\tThe random number seed.\n"
  + "\t(default 1)",
  "W", 1, "-W <double>"));
   
    return result.elements();
View Full Code Here

    en = super.listOptions();
    while (en.hasMoreElements())
      result.addElement(en.nextElement());

    result.addElement(new Option(
  "\tThe Omega parameter.\n"
  + "\t(default: 1.0)",
  "O", 1, "-O <num>"));

    result.addElement(new Option(
  "\tThe Sigma parameter.\n"
  + "\t(default: 1.0)",
  "S", 1, "-S <num>"));

    return result.elements();
View Full Code Here

      desc  +=   "\t" + tag.getSelectedTag().getID()
               + " = " + tag.getSelectedTag().getReadable()
               + "\n";
    }

    result.addElement(new Option(
  "\tThe pruning method to use:\n"
  + desc
  + "\t(default: " + PRUNING_NONE + ")",
  "P", 1, "-P <" + param + ">"));

    result.addElement(new Option(
  "\tThe size of the cache (a prime number).\n"
  + "\t(default: 250007)",
  "C", 1, "-C <num>"));

    result.addElement(new Option(
  "\tThe size of the internal cache (a prime number).\n"
  + "\t(default: 200003)",
  "IC", 1, "-IC <num>"));

    result.addElement(new Option(
  "\tThe lambda constant. Penalizes non-continuous subsequence\n"
  + "\tmatches. Must be in (0,1).\n"
  + "\t(default: 0.5)",
  "L", 1, "-L <num>"));

    result.addElement(new Option(
  "\tThe length of the subsequence.\n"
  + "\t(default: 3)",
  "ssl", 1, "-ssl <num>"));

    result.addElement(new Option(
  "\tThe maximum length of the subsequence.\n"
  + "\t(default: 9)",
  "ssl-max", 1, "-ssl-max <num>"));

    result.addElement(new Option(
  "\tUse normalization.\n"
  + "\t(default: no)",
  "N", 0, "-N"));

    return result.elements();
View Full Code Here

   */
  public Enumeration listOptions() {
 
    Vector newVector = new Vector(1);
 
    newVector.addElement(new Option("\tSpecify the seed of randomization\n"
            + "\tused to randomize the class\n"
            + "\torder (default: 1)",
            "R", 1, "-R <seed>"));
 
    newVector.addElement(new Option("\tSpecify the class order to be\n"
            + "\tsorted, could be 0: ascending\n"
            + "\t1: descending and 2: random.(default: 0)",
            "C", 1, "-C <order>"));
 
    return newVector.elements();
View Full Code Here

    en = super.listOptions();
    while (en.hasMoreElements())
      result.addElement(en.nextElement());

    result.addElement(new Option(
  "\tFull class name of classifier to use, followed\n"
  + "\tby scheme options. eg:\n"
  + "\t\t\"weka.classifiers.bayes.NaiveBayes -D\"\n"
  + "\t(default: weka.classifiers.rules.ZeroR)",
  "W", 1, "-W <classifier specification>"));

    result.addElement(new Option(
  "\tInstead of training a classifier on the data, one can also provide\n"
  + "\ta serialized model and use that for tagging the data.",
  "serialized", 1, "-serialized <file>"));

    result.addElement(new Option(
  "\tAdds an attribute with the actual classification.\n"
  + "\t(default: off)",
  "classification", 0, "-classification"));

    result.addElement(new Option(
  "\tRemoves the old class attribute.\n"
  + "\t(default: off)",
  "remove-old-class", 0, "-remove-old-class"));

    result.addElement(new Option(
  "\tAdds attributes with the distribution for all classes \n"
        + "\t(for numeric classes this will be identical to the attribute \n"
        + "\toutput with '-classification').\n"
  + "\t(default: off)",
  "distribution", 0, "-distribution"));

    result.addElement(new Option(
  "\tAdds an attribute indicating whether the classifier output \n"
        + "\ta wrong classification (for numeric classes this is the numeric \n"
        + "\tdifference).\n"
  + "\t(default: off)",
  "error", 0, "-error"));
View Full Code Here

   * @return an enumeration of all the available options.
   */
  public Enumeration listOptions() {
    Vector result = new Vector();

    result.addElement(new Option(
  "\tSpecify the random number seed (default 1)",
  "S", 1, "-S <num>"));

    result.addElement(new Option(
  "\tThe size of the output dataset, as a percentage of\n"
  +"\tthe input dataset (default 100)",
  "Z", 1, "-Z <num>"));

    result.addElement(new Option(
  "\tBias factor towards uniform class distribution.\n"
  +"\t0 = distribution in input data -- 1 = uniform distribution.\n"
  +"\t(default 0)",
  "B", 1, "-B <num>"));

    result.addElement(new Option(
  "\tDisables replacement of instances\n"
  +"\t(default: with replacement)",
  "no-replacement", 0, "-no-replacement"));

    result.addElement(new Option(
  "\tInverts the selection - only available with '-no-replacement'.",
  "V", 0, "-V"));

    return result.elements();
  }
View Full Code Here

   * @return an enumeration of all the available options.
   */
  public Enumeration listOptions() {
    Vector newVector = new Vector();
   
    newVector.addElement(new Option(
  "\tSpecifies the random number seed\n"
  + "\t(default 1)",
  "S", 1, "-S <num>"));
   
    newVector.addElement(new Option(
  "\tSpecifies percentage of SMOTE instances to create.\n"
  + "\t(default 100.0)\n",
  "P", 1, "-P <percentage>"));
   
    newVector.addElement(new Option(
  "\tSpecifies the number of nearest neighbors to use.\n"
  + "\t(default 5)\n",
  "K", 1, "-K <nearest-neighbors>"));
   
    newVector.addElement(new Option(
  "\tSpecifies the index of the nominal class value to SMOTE\n"
  +"\t(default 0: auto-detect non-empty minority class))\n",
  "C", 1, "-C <value-index>"));

    return newVector.elements();
View Full Code Here

   */
  public Enumeration listOptions() {

    Vector newVector = new Vector(6);

    newVector.addElement(new Option(
        "\tSpecifies if inverse of selection is to be output.\n",
        "V", 0, "-V"));

    newVector.addElement(new Option(
              "\tSpecifies number of folds dataset is split into. \n"
        + "\t(default 10)\n",
              "N", 1, "-N <number of folds>"));

    newVector.addElement(new Option(
        "\tSpecifies which fold is selected. (default 1)\n",
        "F", 1, "-F <fold>"));

    newVector.addElement(new Option(
        "\tSpecifies random number seed. (default 0, no randomizing)\n",
        "S", 1, "-S <seed>"));

    return newVector.elements();
  }
View Full Code Here

   */
  public Enumeration listOptions() {

    Vector newVector = new Vector(4);

    newVector.addElement(new Option(
              "\tSpecify the random number seed (default 1)",
              "S", 1, "-S <num>"));
    newVector.addElement(new Option(
              "\tThe maximum class distribution spread.\n"
              +"\t0 = no maximum spread, 1 = uniform distribution, 10 = allow at most\n"
        +"\ta 10:1 ratio between the classes (default 0)",
              "M", 1, "-M <num>"));
    newVector.addElement(new Option(
              "\tAdjust weights so that total weight per class is maintained.\n"
              +"\tIndividual instance weighting is not preserved. (default no\n"
              +"\tweights adjustment",
              "W", 0, "-W"));
    newVector.addElement(new Option(
        "\tThe maximum count for any class value (default 0 = unlimited).\n",
              "X", 0, "-X <num>"));

    return newVector.elements();
  }
View Full Code Here

TOP

Related Classes of weka.core.Option

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.