en = super.listOptions();
while (en.hasMoreElements())
result.addElement(en.nextElement());
result.addElement(new Option(
"\tFull class name of classifier to use, followed\n"
+ "\tby scheme options. eg:\n"
+ "\t\t\"weka.classifiers.bayes.NaiveBayes -D\"\n"
+ "\t(default: weka.classifiers.rules.ZeroR)",
"W", 1, "-W <classifier specification>"));
result.addElement(new Option(
"\tInstead of training a classifier on the data, one can also provide\n"
+ "\ta serialized model and use that for tagging the data.",
"serialized", 1, "-serialized <file>"));
result.addElement(new Option(
"\tAdds an attribute with the actual classification.\n"
+ "\t(default: off)",
"classification", 0, "-classification"));
result.addElement(new Option(
"\tRemoves the old class attribute.\n"
+ "\t(default: off)",
"remove-old-class", 0, "-remove-old-class"));
result.addElement(new Option(
"\tAdds attributes with the distribution for all classes \n"
+ "\t(for numeric classes this will be identical to the attribute \n"
+ "\toutput with '-classification').\n"
+ "\t(default: off)",
"distribution", 0, "-distribution"));
result.addElement(new Option(
"\tAdds an attribute indicating whether the classifier output \n"
+ "\ta wrong classification (for numeric classes this is the numeric \n"
+ "\tdifference).\n"
+ "\t(default: off)",
"error", 0, "-error"));