/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* ParallelMultipleClassifiersCombiner.java
* Copyright (C) 2009 University of Waikato, Hamilton, New Zealand
*
*/
package weka.classifiers;
import java.util.Enumeration;
import java.util.Vector;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import weka.core.Instances;
import weka.core.Option;
import weka.core.Utils;
/**
* Abstract utility class for handling settings common to
* meta classifiers that build an ensemble in parallel using multiple
* classifiers.
*
* @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
* @version $Revision: 6266 $
*/
public abstract class ParallelMultipleClassifiersCombiner extends
MultipleClassifiersCombiner {
/** For serialization */
private static final long serialVersionUID = 728109028953726626L;
/** The number of threads to have executing at any one time */
protected int m_numExecutionSlots = 1;
/** Pool of threads to train models with */
protected transient ThreadPoolExecutor m_executorPool;
/** The number of classifiers completed so far */
protected int m_completed;
/**
* The number of classifiers that experienced a failure of some sort
* during construction
*/
protected int m_failed;
/**
* Returns an enumeration describing the available options.
*
* @return an enumeration of all the available options.
*/
public Enumeration listOptions() {
Vector newVector = new Vector(2);
newVector.addElement(new Option(
"\tNumber of execution slots.\n"
+ "\t(default 1 - i.e. no parallelism)",
"num-slots", 1, "-num-slots <num>"));
Enumeration enu = super.listOptions();
while (enu.hasMoreElements()) {
newVector.addElement(enu.nextElement());
}
return newVector.elements();
}
/**
* Parses a given list of options. Valid options are:<p>
*
* -Z num <br>
* Set the number of execution slots to use (default 1 - i.e. no parallelism). <p>
*
* Options after -- are passed to the designated classifier.<p>
*
* @param options the list of options as an array of strings
* @exception Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String iterations = Utils.getOption("num-slots", options);
if (iterations.length() != 0) {
setNumExecutionSlots(Integer.parseInt(iterations));
} else {
setNumExecutionSlots(1);
}
super.setOptions(options);
}
/**
* Gets the current settings of the classifier.
*
* @return an array of strings suitable for passing to setOptions
*/
public String [] getOptions() {
String [] superOptions = super.getOptions();
String [] options = new String [superOptions.length + 2];
int current = 0;
options[current++] = "-num-slots";
options[current++] = "" + getNumExecutionSlots();
System.arraycopy(superOptions, 0, options, current,
superOptions.length);
return options;
}
/**
* Set the number of execution slots (threads) to use for building the
* members of the ensemble.
*
* @param numSlots the number of slots to use.
*/
public void setNumExecutionSlots(int numSlots) {
m_numExecutionSlots = numSlots;
}
/**
* Get the number of execution slots (threads) to use for building
* the members of the ensemble.
*
* @return the number of slots to use
*/
public int getNumExecutionSlots() {
return m_numExecutionSlots;
}
/**
* Returns the tip text for this property
* @return tip text for this property suitable for
* displaying in the explorer/experimenter gui
*/
public String numExecutionSlotsTipText() {
return "The number of execution slots (threads) to use for " +
"constructing the ensemble.";
}
/**
* Stump method for building the classifiers
*
* @param data the training data to be used for generating the ensemble
* @exception Exception if the classifier could not be built successfully
*/
public void buildClassifier(Instances data) throws Exception {
if (m_numExecutionSlots < 1) {
throw new Exception("Number of execution slots needs to be >= 1!");
}
if (m_numExecutionSlots > 1) {
if (m_Debug) {
System.out.println("Starting executor pool with " + m_numExecutionSlots
+ " slots...");
}
startExecutorPool();
}
m_completed = 0;
m_failed = 0;
}
/**
* Start the pool of execution threads
*/
protected void startExecutorPool() {
if (m_executorPool != null) {
m_executorPool.shutdownNow();
}
m_executorPool = new ThreadPoolExecutor(m_numExecutionSlots, m_numExecutionSlots,
120, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>());
}
private synchronized void block(boolean tf) {
if (tf) {
try {
wait();
} catch (InterruptedException ex) {
}
} else {
notifyAll();
}
}
/**
* Does the actual construction of the ensemble
*
* @throws Exception if something goes wrong during the training
* process
*/
protected synchronized void buildClassifiers(final Instances data) throws Exception {
for (int i = 0; i < m_Classifiers.length; i++) {
if (m_numExecutionSlots > 1) {
final Classifier currentClassifier = m_Classifiers[i];
final int iteration = i;
Runnable newTask = new Runnable() {
public void run() {
try {
if (m_Debug) {
System.out.println("Training classifier (" + (iteration +1) + ")");
}
currentClassifier.buildClassifier(data);
if (m_Debug) {
System.out.println("Finished classifier (" + (iteration +1) + ")");
}
completedClassifier(iteration, true);
} catch (Exception ex) {
ex.printStackTrace();
completedClassifier(iteration, false);
}
}
};
// launch this task
m_executorPool.execute(newTask);
} else {
m_Classifiers[i].buildClassifier(data);
}
}
if (m_numExecutionSlots > 1 && m_completed + m_failed < m_Classifiers.length) {
block(true);
}
}
/**
* Records the completion of the training of a single classifier. Unblocks if
* all classifiers have been trained.
*
* @param iteration the iteration that has completed
* @param success whether the classifier trained successfully
*/
protected synchronized void completedClassifier(int iteration,
boolean success) {
if (!success) {
m_failed++;
if (m_Debug) {
System.err.println("Iteration " + iteration + " failed!");
}
} else {
m_completed++;
}
if (m_completed + m_failed == m_Classifiers.length) {
if (m_failed > 0) {
if (m_Debug) {
System.err.println("Problem building classifiers - some iterations failed.");
}
}
// have to shut the pool down or program executes as a server
// and when running from the command line does not return to the
// prompt
m_executorPool.shutdown();
block(false);
}
}
}