Enumeration enm = super.listOptions();
while (enm.hasMoreElements())
result.addElement(enm.nextElement());
result.addElement(new Option(
"\tTurns off all checks - use with caution!\n"
+ "\tTurning them off assumes that data is purely numeric, doesn't\n"
+ "\tcontain any missing values, and has a nominal class. Turning them\n"
+ "\toff also means that no header information will be stored if the\n"
+ "\tmachine is linear. Finally, it also assumes that no instance has\n"
+ "\ta weight equal to 0.\n"
+ "\t(default: checks on)",
"no-checks", 0, "-no-checks"));
result.addElement(new Option(
"\tThe complexity constant C. (default 1)",
"C", 1, "-C <double>"));
result.addElement(new Option(
"\tWhether to 0=normalize/1=standardize/2=neither. " +
"(default 0=normalize)",
"N", 1, "-N"));
result.addElement(new Option(
"\tThe tolerance parameter. " +
"(default 1.0e-3)",
"L", 1, "-L <double>"));
result.addElement(new Option(
"\tThe epsilon for round-off error. " +
"(default 1.0e-12)",
"P", 1, "-P <double>"));
result.addElement(new Option(
"\tFit logistic models to SVM outputs. ",
"M", 0, "-M"));
result.addElement(new Option(
"\tThe number of folds for the internal\n" +
"\tcross-validation. " +
"(default -1, use training data)",
"V", 1, "-V <double>"));
result.addElement(new Option(
"\tThe random number seed. " +
"(default 1)",
"W", 1, "-W <double>"));
result.addElement(new Option(
"\tThe Kernel to use.\n"
+ "\t(default: weka.classifiers.functions.supportVector.PolyKernel)",
"K", 1, "-K <classname and parameters>"));
result.addElement(new Option(
"",
"", 0, "\nOptions specific to kernel "
+ getKernel().getClass().getName() + ":"));
enm = ((OptionHandler) getKernel()).listOptions();