Package org.apache.commons.math3.stat.interval

Examples of org.apache.commons.math3.stat.interval.ConfidenceInterval


     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
View Full Code Here


     * @param matrix matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(final RealMatrix matrix) {
        int nVars = matrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            for (int j = 0; j < i; j++) {
                double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
                outMatrix.setEntry(i, j, corr);
                outMatrix.setEntry(j, i, corr);
            }
            outMatrix.setEntry(i, i, 1d);
        }
        return outMatrix;
    }
View Full Code Here

        // solve the rectangular system in the least square sense
        // to get the best estimate of the Nordsieck vector [s2 ... sk]
        QRDecomposition decomposition;
        decomposition = new QRDecomposition(new Array2DRowRealMatrix(a, false));
        RealMatrix x = decomposition.getSolver().solve(new Array2DRowRealMatrix(b, false));
        return new Array2DRowRealMatrix(x.getData(), false);
    }
View Full Code Here

        double[] qtf     = new double[nR];
        double[] work1   = new double[nC];
        double[] work2   = new double[nC];
        double[] work3   = new double[nC];

        final RealMatrix weightMatrixSqrt = getWeightSquareRoot();

        // Evaluate the function at the starting point and calculate its norm.
        double[] currentObjective = computeObjectiveValue(currentPoint);
        double[] currentResiduals = computeResiduals(currentObjective);
        PointVectorValuePair current = new PointVectorValuePair(currentPoint, currentObjective);
        double currentCost = computeCost(currentResiduals);

        // Outer loop.
        lmPar = 0;
        boolean firstIteration = true;
        final ConvergenceChecker<PointVectorValuePair> checker = getConvergenceChecker();
        while (true) {
            incrementIterationCount();

            final PointVectorValuePair previous = current;

            // QR decomposition of the jacobian matrix
            qrDecomposition(computeWeightedJacobian(currentPoint));

            weightedResidual = weightMatrixSqrt.operate(currentResiduals);
            for (int i = 0; i < nR; i++) {
                qtf[i] = weightedResidual[i];
            }

            // compute Qt.res
View Full Code Here

    for (SiteWithPolynomial site : sites) {
     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
        vector.setEntry(row, nearSite.pos.y);
      }
     
      QRDecomposition qr = new QRDecomposition(matrix);
      RealVector solution = qr.getSolver().solve(vector);
       
      double[] coeffs = solution.toArray();
     
      for (double coeff : coeffs) {
        if (coeff > 10e3) {
          continue calculatePolynomials;
        }
View Full Code Here

                return Double.compare(weightedResidual(o1),
                                      weightedResidual(o2));
            }

            private double weightedResidual(final PointVectorValuePair pv) {
                final RealVector v = new ArrayRealVector(pv.getValueRef(), false);
                final RealVector r = target.subtract(v);
                return r.dotProduct(weight.operate(r));
            }
        };
    }
View Full Code Here

            // predict a first estimate of the state at step end
            final double stepEnd = stepStart + stepSize;
            interpolator.shift();
            interpolator.setInterpolatedTime(stepEnd);
            final ExpandableStatefulODE expandable = getExpandable();
            final EquationsMapper primary = expandable.getPrimaryMapper();
            primary.insertEquationData(interpolator.getInterpolatedState(), y);
            int index = 0;
            for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
                secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y);
                ++index;
            }
View Full Code Here

            // predict a first estimate of the state at step end
            final double stepEnd = stepStart + stepSize;
            interpolator.shift();
            interpolator.setInterpolatedTime(stepEnd);
            final ExpandableStatefulODE expandable = getExpandable();
            final EquationsMapper primary = expandable.getPrimaryMapper();
            primary.insertEquationData(interpolator.getInterpolatedState(), y);
            int index = 0;
            for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
                secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y);
                ++index;
            }

            // evaluate the derivative
View Full Code Here

        final double[] y0   = equations.getCompleteState();
        final double[] y    = y0.clone();
        final double[] yDot = new double[y.length];

        // set up an interpolator sharing the integrator arrays
        final NordsieckStepInterpolator interpolator = new NordsieckStepInterpolator();
        interpolator.reinitialize(y, forward,
                                  equations.getPrimaryMapper(), equations.getSecondaryMappers());

        // set up integration control objects
        initIntegration(equations.getTime(), y0, t);

        // compute the initial Nordsieck vector using the configured starter integrator
        start(equations.getTime(), y, t);
        interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
        interpolator.storeTime(stepStart);
        final int lastRow = nordsieck.getRowDimension() - 1;

        // reuse the step that was chosen by the starter integrator
        double hNew = stepSize;
        interpolator.rescale(hNew);

        // main integration loop
        isLastStep = false;
        do {

            double error = 10;
            while (error >= 1.0) {

                stepSize = hNew;

                // evaluate error using the last term of the Taylor expansion
                error = 0;
                for (int i = 0; i < mainSetDimension; ++i) {
                    final double yScale = FastMath.abs(y[i]);
                    final double tol = (vecAbsoluteTolerance == null) ?
                                       (scalAbsoluteTolerance + scalRelativeTolerance * yScale) :
                                       (vecAbsoluteTolerance[i] + vecRelativeTolerance[i] * yScale);
                    final double ratio  = nordsieck.getEntry(lastRow, i) / tol;
                    error += ratio * ratio;
                }
                error = FastMath.sqrt(error / mainSetDimension);

                if (error >= 1.0) {
                    // reject the step and attempt to reduce error by stepsize control
                    final double factor = computeStepGrowShrinkFactor(error);
                    hNew = filterStep(stepSize * factor, forward, false);
                    interpolator.rescale(hNew);

                }
            }

            // predict a first estimate of the state at step end
            final double stepEnd = stepStart + stepSize;
            interpolator.shift();
            interpolator.setInterpolatedTime(stepEnd);
            final ExpandableStatefulODE expandable = getExpandable();
            final EquationsMapper primary = expandable.getPrimaryMapper();
            primary.insertEquationData(interpolator.getInterpolatedState(), y);
            int index = 0;
            for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
                secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y);
                ++index;
            }

            // evaluate the derivative
            computeDerivatives(stepEnd, y, yDot);

            // update Nordsieck vector
            final double[] predictedScaled = new double[y0.length];
            for (int j = 0; j < y0.length; ++j) {
                predictedScaled[j] = stepSize * yDot[j];
            }
            final Array2DRowRealMatrix nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
            updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);
            interpolator.reinitialize(stepEnd, stepSize, predictedScaled, nordsieckTmp);

            // discrete events handling
            interpolator.storeTime(stepEnd);
            stepStart = acceptStep(interpolator, y, yDot, t);
            scaled    = predictedScaled;
            nordsieck = nordsieckTmp;
            interpolator.reinitialize(stepEnd, stepSize, scaled, nordsieck);

            if (!isLastStep) {

                // prepare next step
                interpolator.storeTime(stepStart);

                if (resetOccurred) {
                    // some events handler has triggered changes that
                    // invalidate the derivatives, we need to restart from scratch
                    start(stepStart, y, t);
                    interpolator.reinitialize(stepStart, stepSize, scaled, nordsieck);
                }

                // stepsize control for next step
                final double  factor     = computeStepGrowShrinkFactor(error);
                final double  scaledH    = stepSize * factor;
                final double  nextT      = stepStart + scaledH;
                final boolean nextIsLast = forward ? (nextT >= t) : (nextT <= t);
                hNew = filterStep(scaledH, forward, nextIsLast);

                final double  filteredNextT      = stepStart + hNew;
                final boolean filteredNextIsLast = forward ? (filteredNextT >= t) : (filteredNextT <= t);
                if (filteredNextIsLast) {
                    hNew = t - stepStart;
                }

                interpolator.rescale(hNew);

            }

        } while (!isLastStep);

View Full Code Here

        // Multi-start loop.
        for (int i = 0; i < starts; i++) {
            // CHECKSTYLE: stop IllegalCatch
            try {
                // Decrease number of allowed evaluations.
                optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations);
                // New start value.
                final double s = (i == 0) ?
                    startValue :
                    min + generator.nextDouble() * (max - min);
                optimData[searchIntervalIndex] = new SearchInterval(min, max, s);
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.stat.interval.ConfidenceInterval

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.