Package org.apache.commons.math3.analysis.solvers

Examples of org.apache.commons.math3.analysis.solvers.BrentSolver


                return false;
            }
            final int    n = FastMath.max(1, (int) FastMath.ceil(FastMath.abs(dt) / maxCheckInterval));
            final double h = dt / n;

            final UnivariateFunction f = new UnivariateFunction() {
                public double value(final double t) throws LocalMaxCountExceededException {
                    try {
                        interpolator.setInterpolatedTime(t);
                        return handler.g(t, getCompleteState(interpolator));
                    } catch (MaxCountExceededException mcee) {
                        throw new LocalMaxCountExceededException(mcee);
                    }
                }
            };

            double ta = t0;
            double ga = g0;
            for (int i = 0; i < n; ++i) {

                // evaluate handler value at the end of the substep
                final double tb = t0 + (i + 1) * h;
                interpolator.setInterpolatedTime(tb);
                final double gb = handler.g(tb, getCompleteState(interpolator));

                // check events occurrence
                if (g0Positive ^ (gb >= 0)) {
                    // there is a sign change: an event is expected during this step

                    // variation direction, with respect to the integration direction
                    increasing = gb >= ga;

                    // find the event time making sure we select a solution just at or past the exact root
                    final double root;
                    if (solver instanceof BracketedUnivariateSolver<?>) {
                        @SuppressWarnings("unchecked")
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                (BracketedUnivariateSolver<UnivariateFunction>) solver;
                        root = forward ?
                               bracketing.solve(maxIterationCount, f, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               bracketing.solve(maxIterationCount, f, tb, ta, AllowedSolution.LEFT_SIDE);
                    } else {
                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
                    }

                    if ((!Double.isNaN(previousEventTime)) &&
                        (FastMath.abs(root - ta) <= convergence) &&
                        (FastMath.abs(root - previousEventTime) <= convergence)) {
                        // we have either found nothing or found (again ?) a past event,
                        // retry the substep excluding this value, and taking care to have the
                        // required sign in case the g function is noisy around its zero and
                        // crosses the axis several times
                        do {
                            ta = forward ? ta + convergence : ta - convergence;
                            ga = f.value(ta);
                        } while ((g0Positive ^ (ga >= 0)) && (forward ^ (ta >= tb)));
                        --i;
                    } else if (Double.isNaN(previousEventTime) ||
                               (FastMath.abs(previousEventTime - root) > convergence)) {
                        pendingEventTime = root;
View Full Code Here


     */
    public NonLinearConjugateGradientOptimizer(final ConjugateGradientFormula updateFormula,
                                               ConvergenceChecker<PointValuePair> checker) {
        this(updateFormula,
             checker,
             new BrentSolver(),
             new IdentityPreconditioner());
    }
View Full Code Here

                };

        NonLinearConjugateGradientOptimizer optimizer =
            new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                    new SimpleValueChecker(1e-13, 1e-13),
                                                    new BrentSolver(),
                                                    preconditioner);
                                                   
        PointValuePair optimum =
            optimizer.optimize(100, problem, GoalType.MINIMIZE, new double[] { 0, 0, 0, 0, 0, 0 });
        Assert.assertEquals( 3.0, optimum.getPoint()[0], 1.0e-10);
View Full Code Here

                7.0, 5.09.0, 10.0 }
        }, new double[] { 32, 23, 33, 31 });
        NonLinearConjugateGradientOptimizer optimizer =
            new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                    new SimpleValueChecker(1e-13, 1e-13),
                                                    new BrentSolver(1e-15, 1e-15));
        PointValuePair optimum1 =
            optimizer.optimize(200, problem1, GoalType.MINIMIZE, new double[] { 0, 1, 2, 3 });
        Assert.assertEquals(1.0, optimum1.getPoint()[0], 1.0e-4);
        Assert.assertEquals(1.0, optimum1.getPoint()[1], 1.0e-4);
        Assert.assertEquals(1.0, optimum1.getPoint()[2], 1.0e-4);
View Full Code Here

        circle.addPoint( 35.015.0);
        circle.addPoint( 45.097.0);
        NonLinearConjugateGradientOptimizer optimizer =
            new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                    new SimpleValueChecker(1e-30, 1e-30),
                                                    new BrentSolver(1e-15, 1e-13));
        PointValuePair optimum =
            optimizer.optimize(100, circle, GoalType.MINIMIZE, new double[] { 98.680, 47.345 });
        Vector2D center = new Vector2D(optimum.getPointRef()[0], optimum.getPointRef()[1]);
        Assert.assertEquals(69.960161753, circle.getRadius(center), 1.0e-8);
        Assert.assertEquals(96.075902096, center.getX(), 1.0e-8);
View Full Code Here

     */
    public NonLinearConjugateGradientOptimizer(final ConjugateGradientFormula updateFormula,
                                               ConvergenceChecker<PointValuePair> checker) {
        this(updateFormula,
             checker,
             new BrentSolver(),
             new IdentityPreconditioner());
    }
View Full Code Here

                };

        NonLinearConjugateGradientOptimizer optimizer =
            new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                    new SimpleValueChecker(1e-13, 1e-13),
                                                    new BrentSolver(),
                                                    preconditioner);
                                                   
        PointValuePair optimum =
            optimizer.optimize(100, problem, GoalType.MINIMIZE, new double[] { 0, 0, 0, 0, 0, 0 });
        Assert.assertEquals( 3.0, optimum.getPoint()[0], 1.0e-10);
View Full Code Here

                7.0, 5.09.0, 10.0 }
        }, new double[] { 32, 23, 33, 31 });
        NonLinearConjugateGradientOptimizer optimizer =
            new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                    new SimpleValueChecker(1e-13, 1e-13),
                                                    new BrentSolver(1e-15, 1e-15));
        PointValuePair optimum1 =
            optimizer.optimize(200, problem1, GoalType.MINIMIZE, new double[] { 0, 1, 2, 3 });
        Assert.assertEquals(1.0, optimum1.getPoint()[0], 1.0e-4);
        Assert.assertEquals(1.0, optimum1.getPoint()[1], 1.0e-4);
        Assert.assertEquals(1.0, optimum1.getPoint()[2], 1.0e-4);
View Full Code Here

        circle.addPoint( 35.015.0);
        circle.addPoint( 45.097.0);
        NonLinearConjugateGradientOptimizer optimizer =
            new NonLinearConjugateGradientOptimizer(ConjugateGradientFormula.POLAK_RIBIERE,
                                                    new SimpleValueChecker(1e-30, 1e-30),
                                                    new BrentSolver(1e-15, 1e-13));
        PointValuePair optimum =
            optimizer.optimize(100, circle, GoalType.MINIMIZE, new double[] { 98.680, 47.345 });
        Vector2D center = new Vector2D(optimum.getPointRef()[0], optimum.getPointRef()[1]);
        Assert.assertEquals(69.960161753, circle.getRadius(center), 1.0e-8);
        Assert.assertEquals(96.075902096, center.getX(), 1.0e-8);
View Full Code Here

        };

        final double tolerance = 0.1;
        EventState es = new EventState(closeEventsGenerator, 1.5 * gap,
                                       tolerance, 100,
                                       new BrentSolver(tolerance));
        es.setExpandable(new ExpandableStatefulODE(new FirstOrderDifferentialEquations() {
            public int getDimension() {
                return 0;
            }
            public void computeDerivatives(double t, double[] y, double[] yDot) {
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.analysis.solvers.BrentSolver

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.