Package org.apache.commons.math3.optimization.general

Examples of org.apache.commons.math3.optimization.general.GaussNewtonOptimizer


     * @return the square-root of the weight matrix.
     */
    private RealMatrix squareRoot(RealMatrix m) {
        if (m instanceof DiagonalMatrix) {
            final int dim = m.getRowDimension();
            final RealMatrix sqrtM = new DiagonalMatrix(dim);
            for (int i = 0; i < dim; i++) {
                sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i)));
            }
            return sqrtM;
        } else {
            final EigenDecomposition dec = new EigenDecomposition(m);
            return dec.getSquareRoot();
View Full Code Here


     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
View Full Code Here

     * @param matrix matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(final RealMatrix matrix) {
        int nVars = matrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            for (int j = 0; j < i; j++) {
                double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
                outMatrix.setEntry(i, j, corr);
                outMatrix.setEntry(j, i, corr);
            }
            outMatrix.setEntry(i, i, 1d);
        }
        return outMatrix;
    }
View Full Code Here

        // solve the rectangular system in the least square sense
        // to get the best estimate of the Nordsieck vector [s2 ... sk]
        QRDecomposition decomposition;
        decomposition = new QRDecomposition(new Array2DRowRealMatrix(a, false));
        RealMatrix x = decomposition.getSolver().solve(new Array2DRowRealMatrix(b, false));
        return new Array2DRowRealMatrix(x.getData(), false);
    }
View Full Code Here

    for (SiteWithPolynomial site : sites) {
     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
        vector.setEntry(row, nearSite.pos.y);
      }
     
      QRDecomposition qr = new QRDecomposition(matrix);
      RealVector solution = qr.getSolver().solve(vector);
       
      double[] coeffs = solution.toArray();
     
      for (double coeff : coeffs) {
        if (coeff > 10e3) {
          continue calculatePolynomials;
        }
View Full Code Here

                return Double.compare(weightedResidual(o1),
                                      weightedResidual(o2));
            }

            private double weightedResidual(final PointVectorValuePair pv) {
                final RealVector v = new ArrayRealVector(pv.getValueRef(), false);
                final RealVector r = target.subtract(v);
                return r.dotProduct(weight.operate(r));
            }
        };
    }
View Full Code Here

            // predict a first estimate of the state at step end
            final double stepEnd = stepStart + stepSize;
            interpolator.shift();
            interpolator.setInterpolatedTime(stepEnd);
            final ExpandableStatefulODE expandable = getExpandable();
            final EquationsMapper primary = expandable.getPrimaryMapper();
            primary.insertEquationData(interpolator.getInterpolatedState(), y);
            int index = 0;
            for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
                secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y);
                ++index;
            }
View Full Code Here

            // predict a first estimate of the state at step end
            final double stepEnd = stepStart + stepSize;
            interpolator.shift();
            interpolator.setInterpolatedTime(stepEnd);
            final ExpandableStatefulODE expandable = getExpandable();
            final EquationsMapper primary = expandable.getPrimaryMapper();
            primary.insertEquationData(interpolator.getInterpolatedState(), y);
            int index = 0;
            for (final EquationsMapper secondary : expandable.getSecondaryMappers()) {
                secondary.insertEquationData(interpolator.getInterpolatedSecondaryState(index), y);
                ++index;
            }

            // evaluate the derivative
View Full Code Here

        // Multi-start loop.
        for (int i = 0; i < starts; i++) {
            // CHECKSTYLE: stop IllegalCatch
            try {
                // Decrease number of allowed evaluations.
                optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations);
                // New start value.
                final double s = (i == 0) ?
                    startValue :
                    min + generator.nextDouble() * (max - min);
                optimData[searchIntervalIndex] = new SearchInterval(min, max, s);
View Full Code Here

        // version 3.1 of the library. It should be removed when GaussNewtonOptimizer
        // will officialy be declared as implementing MultivariateDifferentiableVectorOptimizer
        MultivariateDifferentiableVectorOptimizer underlyingOptimizer =
                new MultivariateDifferentiableVectorOptimizer() {
            private GaussNewtonOptimizer gn =
                    new GaussNewtonOptimizer(true,
                                             new SimpleVectorValueChecker(1.0e-6, 1.0e-6));

            public PointVectorValuePair optimize(int maxEval,
                                                 MultivariateDifferentiableVectorFunction f,
                                                 double[] target,
                                                 double[] weight,
                                                 double[] startPoint) {
                return gn.optimize(maxEval, f, target, weight, startPoint);
            }

            public int getMaxEvaluations() {
                return gn.getMaxEvaluations();
            }

            public int getEvaluations() {
                return gn.getEvaluations();
            }

            public ConvergenceChecker<PointVectorValuePair> getConvergenceChecker() {
                return gn.getConvergenceChecker();
            }
        };
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator =
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.optimization.general.GaussNewtonOptimizer

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.