Package org.apache.commons.math3.optim

Examples of org.apache.commons.math3.optim.PointValuePair$DataTransferObject


            final double[] xOriginal = original[i].getPointRef();
            final double[] xTransformed = new double[dim];
            for (int j = 0; j < dim; j++) {
                xTransformed[j] = xSmallest[j] + coeff * (xSmallest[j] - xOriginal[j]);
            }
            setPoint(i, new PointValuePair(xTransformed, Double.NaN, false));
        }

        // Evaluate the simplex.
        evaluate(evaluationFunction, comparator);

View Full Code Here


        double delta = 0;
        for (int i = 0; i < n; ++i) {
            delta += r[i] * searchDirection[i];
        }

        PointValuePair current = null;
        while (true) {
            incrementIterationCount();

            final double objective = computeObjectiveValue(point);
            PointValuePair previous = current;
            current = new PointValuePair(point, objective);
            if (previous != null && checker.converged(getIterations(), previous, current)) {
                // We have found an optimum.
                return current;
            }

View Full Code Here

        initializeCMA(guess);
        iterations = 0;
        ValuePenaltyPair valuePenalty = fitfun.value(guess);
        double bestValue = valuePenalty.value+valuePenalty.penalty;
        push(fitnessHistory, bestValue);
        PointValuePair optimum
            = new PointValuePair(getStartPoint(),
                                 isMinimize ? bestValue : -bestValue);
        PointValuePair lastResult = null;

        // -------------------- Generation Loop --------------------------------

        generationLoop:
        for (iterations = 1; iterations <= maxIterations; iterations++) {
            incrementIterationCount();

            // Generate and evaluate lambda offspring
            final RealMatrix arz = randn1(dimension, lambda);
            final RealMatrix arx = zeros(dimension, lambda);
            final double[] fitness = new double[lambda];
            final ValuePenaltyPair[] valuePenaltyPairs = new ValuePenaltyPair[lambda];
            // generate random offspring
            for (int k = 0; k < lambda; k++) {
                RealMatrix arxk = null;
                for (int i = 0; i < checkFeasableCount + 1; i++) {
                    if (diagonalOnly <= 0) {
                        arxk = xmean.add(BD.multiply(arz.getColumnMatrix(k))
                                         .scalarMultiply(sigma)); // m + sig * Normal(0,C)
                    } else {
                        arxk = xmean.add(times(diagD,arz.getColumnMatrix(k))
                                         .scalarMultiply(sigma));
                    }
                    if (i >= checkFeasableCount ||
                        fitfun.isFeasible(arxk.getColumn(0))) {
                        break;
                    }
                    // regenerate random arguments for row
                    arz.setColumn(k, randn(dimension));
                }
                copyColumn(arxk, 0, arx, k);
                try {
                    valuePenaltyPairs[k] = fitfun.value(arx.getColumn(k)); // compute fitness
                } catch (TooManyEvaluationsException e) {
                    break generationLoop;
                }
            }

            // Compute fitnesses by adding value and penalty after scaling by value range.
            double valueRange = valueRange(valuePenaltyPairs);
            for (int iValue=0;iValue<valuePenaltyPairs.length;iValue++) {
                 fitness[iValue] = valuePenaltyPairs[iValue].value + valuePenaltyPairs[iValue].penalty*valueRange;
            }

            // Sort by fitness and compute weighted mean into xmean
            final int[] arindex = sortedIndices(fitness);
            // Calculate new xmean, this is selection and recombination
            final RealMatrix xold = xmean; // for speed up of Eq. (2) and (3)
            final RealMatrix bestArx = selectColumns(arx, MathArrays.copyOf(arindex, mu));
            xmean = bestArx.multiply(weights);
            final RealMatrix bestArz = selectColumns(arz, MathArrays.copyOf(arindex, mu));
            final RealMatrix zmean = bestArz.multiply(weights);
            final boolean hsig = updateEvolutionPaths(zmean, xold);
            if (diagonalOnly <= 0) {
                updateCovariance(hsig, bestArx, arz, arindex, xold);
            } else {
                updateCovarianceDiagonalOnly(hsig, bestArz);
            }
            // Adapt step size sigma - Eq. (5)
            sigma *= FastMath.exp(FastMath.min(1, (normps/chiN - 1) * cs / damps));
            final double bestFitness = fitness[arindex[0]];
            final double worstFitness = fitness[arindex[arindex.length - 1]];
            if (bestValue > bestFitness) {
                bestValue = bestFitness;
                lastResult = optimum;
                optimum = new PointValuePair(fitfun.repair(bestArx.getColumn(0)),
                                             isMinimize ? bestFitness : -bestFitness);
                if (getConvergenceChecker() != null && lastResult != null &&
                    getConvergenceChecker().converged(iterations, optimum, lastResult)) {
                    break generationLoop;
                }
            }
            // handle termination criteria
            // Break, if fitness is good enough
            if (stopFitness != 0 && bestFitness < (isMinimize ? stopFitness : -stopFitness)) {
                break generationLoop;
            }
            final double[] sqrtDiagC = sqrt(diagC).getColumn(0);
            final double[] pcCol = pc.getColumn(0);
            for (int i = 0; i < dimension; i++) {
                if (sigma * FastMath.max(FastMath.abs(pcCol[i]), sqrtDiagC[i]) > stopTolX) {
                    break;
                }
                if (i >= dimension - 1) {
                    break generationLoop;
                }
            }
            for (int i = 0; i < dimension; i++) {
                if (sigma * sqrtDiagC[i] > stopTolUpX) {
                    break generationLoop;
                }
            }
            final double historyBest = min(fitnessHistory);
            final double historyWorst = max(fitnessHistory);
            if (iterations > 2 &&
                FastMath.max(historyWorst, worstFitness) -
                FastMath.min(historyBest, bestFitness) < stopTolFun) {
                break generationLoop;
            }
            if (iterations > fitnessHistory.length &&
                historyWorst - historyBest < stopTolHistFun) {
                break generationLoop;
            }
            // condition number of the covariance matrix exceeds 1e14
            if (max(diagD) / min(diagD) > 1e7) {
                break generationLoop;
            }
            // user defined termination
            if (getConvergenceChecker() != null) {
                final PointValuePair current
                    = new PointValuePair(bestArx.getColumn(0),
                                         isMinimize ? bestFitness : -bestFitness);
                if (lastResult != null &&
                    getConvergenceChecker().converged(iterations, current, lastResult)) {
                    break generationLoop;
                    }
View Full Code Here

            = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 });
        NonLinearConjugateGradientOptimizer optimizer
            = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
                                                      new SimpleValueChecker(1e-6, 1e-6),
                                                      1e-3, 1e-3, 1);
        PointValuePair optimum
            = optimizer.optimize(new MaxEval(100),
                                 problem.getObjectiveFunction(),
                                 problem.getObjectiveFunctionGradient(),
                                 GoalType.MINIMIZE,
                                 new InitialGuess(new double[] { 0 }));
        Assert.assertEquals(1.5, optimum.getPoint()[0], 1.0e-10);
        Assert.assertEquals(0.0, optimum.getValue(), 1.0e-10);

        // Check that the number of iterations is updated (MATH-949).
        Assert.assertTrue(optimizer.getIterations() > 0);
    }
View Full Code Here

        NonLinearConjugateGradientOptimizer optimizer
            = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
                                                      new SimpleValueChecker(1e-6, 1e-6),
                                                      1e-3, 1e-3, 1);
        PointValuePair optimum
            = optimizer.optimize(new MaxEval(100),
                                 problem.getObjectiveFunction(),
                                 problem.getObjectiveFunctionGradient(),
                                 GoalType.MINIMIZE,
                                 new InitialGuess(new double[] { 0, 0 }));
        Assert.assertEquals(7.0, optimum.getPoint()[0], 1.0e-10);
        Assert.assertEquals(3.0, optimum.getPoint()[1], 1.0e-10);
        Assert.assertEquals(0.0, optimum.getValue(), 1.0e-10);

    }
View Full Code Here

        }, new double[] { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 });
        NonLinearConjugateGradientOptimizer optimizer
            = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
                                                      new SimpleValueChecker(1e-6, 1e-6),
                                                      1e-3, 1e-3, 1);
        PointValuePair optimum
            = optimizer.optimize(new MaxEval(100),
                                 problem.getObjectiveFunction(),
                                 problem.getObjectiveFunctionGradient(),
                                 GoalType.MINIMIZE,
                                 new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 }));
        for (int i = 0; i < problem.target.length; ++i) {
            Assert.assertEquals(0.55 * i, optimum.getPoint()[i], 1.0e-10);
        }
    }
View Full Code Here

        }, new double[] { 1, 1, 1});
        NonLinearConjugateGradientOptimizer optimizer
            = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
                                                      new SimpleValueChecker(1e-6, 1e-6),
                                                      1e-3, 1e-3, 1);
        PointValuePair optimum
            = optimizer.optimize(new MaxEval(100),
                                 problem.getObjectiveFunction(),
                                 problem.getObjectiveFunctionGradient(),
                                 GoalType.MINIMIZE,
                                 new InitialGuess(new double[] { 0, 0, 0 }));
        Assert.assertEquals(1.0, optimum.getPoint()[0], 1.0e-10);
        Assert.assertEquals(2.0, optimum.getPoint()[1], 1.0e-10);
        Assert.assertEquals(3.0, optimum.getPoint()[2], 1.0e-10);

    }
View Full Code Here

           = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
                                                     new SimpleValueChecker(1e-13, 1e-13),
                                                     1e-7, 1e-7, 1,
                                                     preconditioner);

        PointValuePair optimum
            = optimizer.optimize(new MaxEval(100),
                                 problem.getObjectiveFunction(),
                                 problem.getObjectiveFunctionGradient(),
                                 GoalType.MINIMIZE,
                                 new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 }));

        final double[] result = optimum.getPoint();
        final double[] expected = {3, 4, -1, -2, 1 + epsilon, 1 - epsilon};

        Assert.assertEquals(expected[0], result[0], 1.0e-7);
        Assert.assertEquals(expected[1], result[1], 1.0e-7);
        Assert.assertEquals(expected[2], result[2], 1.0e-9);
View Full Code Here

        }, new double[] { 1, 1, 1 });
        NonLinearConjugateGradientOptimizer optimizer
            = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
                                                      new SimpleValueChecker(1e-6, 1e-6),
                                                      1e-3, 1e-3, 1);
        PointValuePair optimum
            = optimizer.optimize(new MaxEval(100),
                                 problem.getObjectiveFunction(),
                                 problem.getObjectiveFunctionGradient(),
                                 GoalType.MINIMIZE,
                                 new InitialGuess(new double[] { 0, 0, 0 }));
        Assert.assertTrue(optimum.getValue() > 0.5);
    }
View Full Code Here

        }, new double[] { 32, 23, 33, 31 });
        NonLinearConjugateGradientOptimizer optimizer
            = new NonLinearConjugateGradientOptimizer(NonLinearConjugateGradientOptimizer.Formula.POLAK_RIBIERE,
                                                      new SimpleValueChecker(1e-13, 1e-13),
                                                      1e-15, 1e-15, 1);
        PointValuePair optimum1
            = optimizer.optimize(new MaxEval(200),
                                 problem1.getObjectiveFunction(),
                                 problem1.getObjectiveFunctionGradient(),
                                 GoalType.MINIMIZE,
                                 new InitialGuess(new double[] { 0, 1, 2, 3 }));
        Assert.assertEquals(1.0, optimum1.getPoint()[0], 1.0e-4);
        Assert.assertEquals(1.0, optimum1.getPoint()[1], 1.0e-3);
        Assert.assertEquals(1.0, optimum1.getPoint()[2], 1.0e-4);
        Assert.assertEquals(1.0, optimum1.getPoint()[3], 1.0e-4);

        LinearProblem problem2 = new LinearProblem(new double[][] {
                { 10.00, 7.00, 8.10, 7.20 },
                7.08, 5.04, 6.00, 5.00 },
                8.00, 5.98, 9.89, 9.00 },
                6.99, 4.99, 9.00, 9.98 }
        }, new double[] { 32, 23, 33, 31 });
        PointValuePair optimum2
            = optimizer.optimize(new MaxEval(200),
                                 problem2.getObjectiveFunction(),
                                 problem2.getObjectiveFunctionGradient(),
                                 GoalType.MINIMIZE,
                                 new InitialGuess(new double[] { 0, 1, 2, 3 }));

        final double[] result2 = optimum2.getPoint();
        final double[] expected2 = {-81, 137, -34, 22};

        Assert.assertEquals(expected2[0], result2[0], 2);
        Assert.assertEquals(expected2[1], result2[1], 4);
        Assert.assertEquals(expected2[2], result2[2], 1);
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.optim.PointValuePair$DataTransferObject

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.