Package org.apache.commons.math3.optim

Examples of org.apache.commons.math3.optim.PointValuePair$DataTransferObject


                coefficients[i] =
                    (basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) -
                    (restrictToNonNegative ? 0 : mostNegative);
            }
        }
        return new PointValuePair(coefficients, f.value(coefficients));
    }
View Full Code Here


        // check that the solution respects the nonNegative restriction in case
        // the epsilon/cutOff values are too large for the actual linear problem
        // (e.g. with very small constraint coefficients), the solver might actually
        // find a non-valid solution (with negative coefficients).
        final PointValuePair solution = tableau.getSolution();
        if (isRestrictedToNonNegative()) {
            final double[] coeff = solution.getPoint();
            for (int i = 0; i < coeff.length; i++) {
                if (Precision.compareTo(coeff[i], 0, epsilon) < 0) {
                    throw new NoFeasibleSolutionException();
                }
            }
View Full Code Here

        isMinimize = (getGoalType() == GoalType.MINIMIZE);
        currentBest = new ArrayRealVector(getStartPoint());

        final double value = bobyqa(lowerBound, upperBound);

        return new PointValuePair(currentBest.getDataRef(),
                                  isMinimize ? value : -value);
    }
View Full Code Here

                        final Comparator<PointValuePair> comparator) {
        // The simplex has n + 1 points if dimension is n.
        final int n = getDimension();

        // Interesting values.
        final PointValuePair best = getPoint(0);
        final PointValuePair secondBest = getPoint(n - 1);
        final PointValuePair worst = getPoint(n);
        final double[] xWorst = worst.getPointRef();

        // Compute the centroid of the best vertices (dismissing the worst
        // point at index n).
        final double[] centroid = new double[n];
        for (int i = 0; i < n; i++) {
            final double[] x = getPoint(i).getPointRef();
            for (int j = 0; j < n; j++) {
                centroid[j] += x[j];
            }
        }
        final double scaling = 1.0 / n;
        for (int j = 0; j < n; j++) {
            centroid[j] *= scaling;
        }

        // compute the reflection point
        final double[] xR = new double[n];
        for (int j = 0; j < n; j++) {
            xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]);
        }
        final PointValuePair reflected
            = new PointValuePair(xR, evaluationFunction.value(xR), false);

        if (comparator.compare(best, reflected) <= 0 &&
            comparator.compare(reflected, secondBest) < 0) {
            // Accept the reflected point.
            replaceWorstPoint(reflected, comparator);
        } else if (comparator.compare(reflected, best) < 0) {
            // Compute the expansion point.
            final double[] xE = new double[n];
            for (int j = 0; j < n; j++) {
                xE[j] = centroid[j] + khi * (xR[j] - centroid[j]);
            }
            final PointValuePair expanded
                = new PointValuePair(xE, evaluationFunction.value(xE), false);

            if (comparator.compare(expanded, reflected) < 0) {
                // Accept the expansion point.
                replaceWorstPoint(expanded, comparator);
            } else {
                // Accept the reflected point.
                replaceWorstPoint(reflected, comparator);
            }
        } else {
            if (comparator.compare(reflected, worst) < 0) {
                // Perform an outside contraction.
                final double[] xC = new double[n];
                for (int j = 0; j < n; j++) {
                    xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]);
                }
                final PointValuePair outContracted
                    = new PointValuePair(xC, evaluationFunction.value(xC), false);
                if (comparator.compare(outContracted, reflected) <= 0) {
                    // Accept the contraction point.
                    replaceWorstPoint(outContracted, comparator);
                    return;
                }
            } else {
                // Perform an inside contraction.
                final double[] xC = new double[n];
                for (int j = 0; j < n; j++) {
                    xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]);
                }
                final PointValuePair inContracted
                    = new PointValuePair(xC, evaluationFunction.value(xC), false);

                if (comparator.compare(inContracted, worst) < 0) {
                    // Accept the contraction point.
                    replaceWorstPoint(inContracted, comparator);
                    return;
                }
            }

            // Perform a shrink.
            final double[] xSmallest = getPoint(0).getPointRef();
            for (int i = 1; i <= n; i++) {
                final double[] x = getPoint(i).getPoint();
                for (int j = 0; j < n; j++) {
                    x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]);
                }
                setPoint(i, new PointValuePair(x, Double.NaN, false));
            }
            evaluate(evaluationFunction, comparator);
        }
    }
View Full Code Here

            throw new DimensionMismatchException(dimension, startPoint.length);
        }

        // Set first vertex.
        simplex = new PointValuePair[dimension + 1];
        simplex[0] = new PointValuePair(startPoint, Double.NaN);

        // Set remaining vertices.
        for (int i = 0; i < dimension; i++) {
            final double[] confI = startConfiguration[i];
            final double[] vertexI = new double[dimension];
            for (int k = 0; k < dimension; k++) {
                vertexI[k] = startPoint[k] + confI[k];
            }
            simplex[i + 1] = new PointValuePair(vertexI, Double.NaN);
        }
    }
View Full Code Here

     */
    public void evaluate(final MultivariateFunction evaluationFunction,
                         final Comparator<PointValuePair> comparator) {
        // Evaluate the objective function at all non-evaluated simplex points.
        for (int i = 0; i < simplex.length; i++) {
            final PointValuePair vertex = simplex[i];
            final double[] point = vertex.getPointRef();
            if (Double.isNaN(vertex.getValue())) {
                simplex[i] = new PointValuePair(point, evaluationFunction.value(point), false);
            }
        }

        // Sort the simplex from best to worst.
        Arrays.sort(simplex, comparator);
View Full Code Here

     */
    protected void replaceWorstPoint(PointValuePair pointValuePair,
                                     final Comparator<PointValuePair> comparator) {
        for (int i = 0; i < dimension; i++) {
            if (comparator.compare(simplex[i], pointValuePair) > 0) {
                PointValuePair tmp = simplex[i];
                simplex[i] = pointValuePair;
                pointValuePair = tmp;
            }
        }
        simplex[dimension] = pointValuePair;
View Full Code Here

        final ConvergenceChecker<PointValuePair> checker = getConvergenceChecker();
        while (true) {
            if (getIterations() > 0) {
                boolean converged = true;
                for (int i = 0; i < simplex.getSize(); i++) {
                    PointValuePair prev = previous[i];
                    converged = converged &&
                        checker.converged(iteration, prev, simplex.getPoint(i));
                }
                if (converged) {
                    // We have found an optimum.
View Full Code Here

            // Default convergence check.
            boolean stop = 2 * (fX - fVal) <=
                (relativeThreshold * (FastMath.abs(fX) + FastMath.abs(fVal)) +
                 absoluteThreshold);

            final PointValuePair previous = new PointValuePair(x1, fX);
            final PointValuePair current = new PointValuePair(x, fVal);
            if (!stop && checker != null) { // User-defined stopping criteria.
                stop = checker.converged(getIterations(), previous, current);
            }
            if (stop) {
                if (goal == GoalType.MINIMIZE) {
View Full Code Here

    @Override
    public void iterate(final MultivariateFunction evaluationFunction,
                        final Comparator<PointValuePair> comparator) {
        // Save the original simplex.
        final PointValuePair[] original = getPoints();
        final PointValuePair best = original[0];

        // Perform a reflection step.
        final PointValuePair reflected = evaluateNewSimplex(evaluationFunction,
                                                                original, 1, comparator);
        if (comparator.compare(reflected, best) < 0) {
            // Compute the expanded simplex.
            final PointValuePair[] reflectedSimplex = getPoints();
            final PointValuePair expanded = evaluateNewSimplex(evaluationFunction,
                                                                   original, khi, comparator);
            if (comparator.compare(reflected, expanded) <= 0) {
                // Keep the reflected simplex.
                setPoints(reflectedSimplex);
            }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.optim.PointValuePair$DataTransferObject

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.