Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.BlockRealMatrix


     * @see #correlation(double[], double[])
     */
    public RealMatrix computeCorrelationMatrix(RealMatrix matrix) {
        checkSufficientData(matrix);
        int nVars = matrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            for (int j = 0; j < i; j++) {
              double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
              outMatrix.setEntry(i, j, corr);
              outMatrix.setEntry(j, i, corr);
            }
            outMatrix.setEntry(i, i, 1d);
        }
        return outMatrix;
    }
View Full Code Here


     * @return correlation matrix
     * @throws MathIllegalArgumentException if the array does not contain sufficient data
     * @see #correlation(double[], double[])
     */
    public RealMatrix computeCorrelationMatrix(double[][] data) {
       return computeCorrelationMatrix(new BlockRealMatrix(data));
    }
View Full Code Here

     * @param covarianceMatrix the covariance matrix
     * @return correlation matrix
     */
    public RealMatrix covarianceToCorrelation(RealMatrix covarianceMatrix) {
        int nVars = covarianceMatrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            double sigma = FastMath.sqrt(covarianceMatrix.getEntry(i, i));
            outMatrix.setEntry(i, i, 1d);
            for (int j = 0; j < i; j++) {
                double entry = covarianceMatrix.getEntry(i, j) /
                       (sigma * FastMath.sqrt(covarianceMatrix.getEntry(j, j)));
                outMatrix.setEntry(i, j, entry);
                outMatrix.setEntry(j, i, entry);
            }
        }
        return outMatrix;
    }
View Full Code Here

     * @param matrix matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(final RealMatrix matrix) {
        int nVars = matrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            for (int j = 0; j < i; j++) {
                double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
                outMatrix.setEntry(i, j, corr);
                outMatrix.setEntry(j, i, corr);
            }
            outMatrix.setEntry(i, i, 1d);
        }
        return outMatrix;
    }
View Full Code Here

     *
     * @param matrix matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(final double[][] matrix) {
       return computeCorrelationMatrix(new BlockRealMatrix(matrix));
    }
View Full Code Here

     * @throws NotStrictlyPositiveException if the input data array is not
     * rectangular with at least one row and one column.
     */
    public Covariance(double[][] data, boolean biasCorrected)
    throws MathIllegalArgumentException, NotStrictlyPositiveException {
        this(new BlockRealMatrix(data), biasCorrected);
    }
View Full Code Here

     */
    protected RealMatrix computeCovarianceMatrix(RealMatrix matrix, boolean biasCorrected)
    throws MathIllegalArgumentException {
        int dimension = matrix.getColumnDimension();
        Variance variance = new Variance(biasCorrected);
        RealMatrix outMatrix = new BlockRealMatrix(dimension, dimension);
        for (int i = 0; i < dimension; i++) {
            for (int j = 0; j < i; j++) {
              double cov = covariance(matrix.getColumn(i), matrix.getColumn(j), biasCorrected);
              outMatrix.setEntry(i, j, cov);
              outMatrix.setEntry(j, i, cov);
            }
            outMatrix.setEntry(i, i, variance.evaluate(matrix.getColumn(i)));
        }
        return outMatrix;
    }
View Full Code Here

     * @throws NotStrictlyPositiveException if the input data array is not
     * rectangular with at least one row and one column.
     */
    protected RealMatrix computeCovarianceMatrix(double[][] data, boolean biasCorrected)
    throws MathIllegalArgumentException, NotStrictlyPositiveException {
        return computeCovarianceMatrix(new BlockRealMatrix(data), biasCorrected);
    }
View Full Code Here

     *
     * @param matrix matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(final double[][] matrix) {
       return computeCorrelationMatrix(new BlockRealMatrix(matrix));
    }
View Full Code Here

                nanPositions.addAll(getNaNPositions(matrix.getColumn(i)));
            }

            // if we have found NaN values, we have to update the matrix size
            if (!nanPositions.isEmpty()) {
                transformed = new BlockRealMatrix(matrix.getRowDimension() - nanPositions.size(),
                                                  matrix.getColumnDimension());
                for (int i = 0; i < transformed.getColumnDimension(); i++) {
                    transformed.setColumn(i, removeValues(matrix.getColumn(i), nanPositions));
                }
            }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.BlockRealMatrix

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.