Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.BlockRealMatrix


            for (int j = 0; j < nVars; j++) {
                double r = correlationMatrix.getEntry(i, j);
                out[i][j] = FastMath.sqrt((1 - r * r) /(nObs - 2));
            }
        }
        return new BlockRealMatrix(out);
    }
View Full Code Here


                    double t = FastMath.abs(r * FastMath.sqrt((nObs - 2)/(1 - r * r)));
                    out[i][j] = 2 * tDistribution.cumulativeProbability(-t);
                }
            }
        }
        return new BlockRealMatrix(out);
    }
View Full Code Here

     * @see #correlation(double[], double[])
     */
    public RealMatrix computeCorrelationMatrix(RealMatrix matrix) {
        checkSufficientData(matrix);
        int nVars = matrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            for (int j = 0; j < i; j++) {
              double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
              outMatrix.setEntry(i, j, corr);
              outMatrix.setEntry(j, i, corr);
            }
            outMatrix.setEntry(i, i, 1d);
        }
        return outMatrix;
    }
View Full Code Here

     * @return correlation matrix
     * @throws MathIllegalArgumentException if the array does not contain sufficient data
     * @see #correlation(double[], double[])
     */
    public RealMatrix computeCorrelationMatrix(double[][] data) {
       return computeCorrelationMatrix(new BlockRealMatrix(data));
    }
View Full Code Here

     * @param covarianceMatrix the covariance matrix
     * @return correlation matrix
     */
    public RealMatrix covarianceToCorrelation(RealMatrix covarianceMatrix) {
        int nVars = covarianceMatrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            double sigma = FastMath.sqrt(covarianceMatrix.getEntry(i, i));
            outMatrix.setEntry(i, i, 1d);
            for (int j = 0; j < i; j++) {
                double entry = covarianceMatrix.getEntry(i, j) /
                       (sigma * FastMath.sqrt(covarianceMatrix.getEntry(j, j)));
                outMatrix.setEntry(i, j, entry);
                outMatrix.setEntry(j, i, entry);
            }
        }
        return outMatrix;
    }
View Full Code Here

                }
            }

            try {
                // solve the linearized least squares problem
                RealMatrix mA = new BlockRealMatrix(a);
                DecompositionSolver solver = useLU ?
                        new LUDecomposition(mA).getSolver() :
                        new QRDecomposition(mA).getSolver();
                final double[] dX = solver.solve(new ArrayRealVector(b, false)).toArray();
                // update the estimated parameters
View Full Code Here

                }
            }

            try {
                // solve the linearized least squares problem
                RealMatrix mA = new BlockRealMatrix(a);
                DecompositionSolver solver = useLU ?
                        new LUDecomposition(mA).getSolver() :
                        new QRDecomposition(mA).getSolver();
                final double[] dX = solver.solve(new ArrayRealVector(b, false)).toArray();
                // update the estimated parameters
View Full Code Here

    static class LinearProblem {
        private final RealMatrix factors;
        private final double[] target;

        public LinearProblem(double[][] factors, double[] target) {
            this.factors = new BlockRealMatrix(factors);
            this.target  = target;
        }
View Full Code Here

    private static class LinearProblem implements MultivariateDifferentiableVectorFunction {

        final RealMatrix factors;
        final double[] target;
        public LinearProblem(double[][] factors, double[] target) {
            this.factors = new BlockRealMatrix(factors);
            this.target  = target;
        }
View Full Code Here

    class LinearProblem {
        private final RealMatrix factors;
        private final double[] target;

        public LinearProblem(double[][] factors, double[] target) {
            this.factors = new BlockRealMatrix(factors);
            this.target = target;
        }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.BlockRealMatrix

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.