Examples of Normalize


Examples of weka.filters.unsupervised.attribute.Normalize

      m_Filter = new Standardize();
      ((Standardize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else if (m_filterType == FILTER_NORMALIZE) {
      m_Filter = new Normalize();
      ((Normalize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else {
      m_Filter = null;
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

    Change = 0.0;

    //Manipulate Data
    if (NormalizeData) {
      m_Filter = new Normalize();
      m_Filter.setInputFormat(m_Instances);
      m_Instances = Filter.useFilter(m_Instances, m_Filter);
    }

    //Set the intecept coefficient.
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

    // remove instances with missing class
    insts = new Instances(insts);
    insts.deleteWithMissingClass();
   
    if (getNormalize()) {
      m_Filter = new Normalize();
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    }
   
    Vector vy = new Vector();
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

      m_Filter = new Standardize();
      //((Standardize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else if (m_filterType == FILTER_NORMALIZE) {
      m_Filter = new Normalize();
      //((Normalize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else {
      m_Filter = null;
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

      m_Filter = new Standardize();
      ((Standardize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(instances);
      instances = Filter.useFilter(instances, m_Filter);     
    } else if (m_filterType == FILTER_NORMALIZE) {
      m_Filter = new Normalize();
      ((Normalize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(instances);
      instances = Filter.useFilter(instances, m_Filter);
    } else {
      m_Filter = null;
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

    train.deleteAttributeAt(0); //remove the bagIndex attribute;

    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

    if (m_Filter!=null) {
      m_Filter.setInputFormat(train);
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

    /* filter the training data */
    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

    if (m_Filter!=null) {
      m_Filter.setInputFormat(datasets);
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

    }

    if (m_filterType == FILTER_STANDARDIZE)
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;


    Instances transformedInsts;
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

    /* filter the training data */
    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

    if (m_Filter!=null) {
      m_Filter.setInputFormat(datasets);
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

    train = Filter.useFilter( train, m_ConvertToSI);

    if (m_filterType == FILTER_STANDARDIZE)
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

    if (m_Filter!=null) {
      // normalize/standardize the converted training dataset
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.