Package weka.filters.unsupervised.attribute

Examples of weka.filters.unsupervised.attribute.Normalize


    if (getConvertNominalToBinary()) {
      insts = nominalToBinary(insts);
    }

    if (getNormalize()) {
      m_Filter = new Normalize();
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    }

    List<Integer> vy = new ArrayList<Integer>(insts.numInstances());
View Full Code Here


    if (m_filterType == FILTER_STANDARDIZE) {
      m_Filter = new Standardize();
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else if (m_filterType == FILTER_NORMALIZE) {
      m_Filter = new Normalize();
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else {
      m_Filter = null;
    }
View Full Code Here

      data = Filter.useFilter(data, m_nominalToBinary);
    }
   
    if (!m_dontNormalize && data.numInstances() > 0) {

      m_normalize = new Normalize();
      m_normalize.setInputFormat(data);
      data = Filter.useFilter(data, m_normalize);
    }
   
    m_weights = new double[data.numAttributes() + 1];
View Full Code Here

    // replace missing values filtering, it will fail
    // if the data actually does have missing values
    getCapabilities().testWithFail(insts);
       
    if (getNormalize()) {
      m_Filter = new Normalize();
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    }
   
    Vector vy = new Vector();
View Full Code Here

      m_Filter = new Standardize();
      ((Standardize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(instances);
      instances = Filter.useFilter(instances, m_Filter);     
    } else if (m_filterType == FILTER_NORMALIZE) {
      m_Filter = new Normalize();
      ((Normalize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(instances);
      instances = Filter.useFilter(instances, m_Filter);
    } else {
      m_Filter = null;
View Full Code Here

    m_RemoveUseless = new RemoveUseless();
    m_RemoveUseless.setInputFormat(data);
    data = Filter.useFilter(data, m_RemoveUseless);

    m_Normalize = new Normalize();
    m_Normalize.setInputFormat(data);
    data = Filter.useFilter(data, m_Normalize);

    if(m_NumberOfGroups) {
      generateGroupsFromNumbers(data, random);
View Full Code Here

    }

    if (m_filterType == FILTER_STANDARDIZE)
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;


    Instances transformedInsts;
View Full Code Here

    train.deleteAttributeAt(0); //remove the bagIndex attribute;

    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

    if (m_Filter!=null) {
      m_Filter.setInputFormat(train);
View Full Code Here

    /* filter the training data */
    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

    if (m_Filter!=null) {
      m_Filter.setInputFormat(datasets);
View Full Code Here

    /* filter the training data */
    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

    if (m_Filter!=null) {
      m_Filter.setInputFormat(datasets);
View Full Code Here

TOP

Related Classes of weka.filters.unsupervised.attribute.Normalize

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.