Examples of Normalize


Examples of weka.filters.unsupervised.attribute.Normalize

    /* filter the training data */
    if (m_filterType == FILTER_STANDARDIZE
      m_Filter = new Standardize();
    else if (m_filterType == FILTER_NORMALIZE)
      m_Filter = new Normalize();
    else
      m_Filter = null;

    if (m_Filter != null) {   
      m_Filter.setInputFormat(datasets);
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

      data = Filter.useFilter(data, m_nominalToBinary);
    }
   
    if (!m_dontNormalize && data.numInstances() > 0) {

      m_normalize = new Normalize();
      m_normalize.setInputFormat(data);
      data = Filter.useFilter(data, m_normalize);
    }
   
    m_numInstances = data.numInstances();
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

      m_Filter = new Standardize();
      ((Standardize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(instances);
      instances = Filter.useFilter(instances, m_Filter);     
    } else if (m_filterType == FILTER_NORMALIZE) {
      m_Filter = new Normalize();
      ((Normalize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(instances);
      instances = Filter.useFilter(instances, m_Filter);
    } else {
      m_Filter = null;
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

    if (m_filterType == FILTER_STANDARDIZE) {
      m_Filter = new Standardize();
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else if (m_filterType == FILTER_NORMALIZE) {
      m_Filter = new Normalize();
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else {
      m_Filter = null;
    }
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

      m_Filter = new Standardize();
      ((Standardize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else if (m_filterType == FILTER_NORMALIZE) {
      m_Filter = new Normalize();
      ((Normalize)m_Filter).setIgnoreClass(true);
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    } else {
      m_Filter = null;
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

    // replace missing values filtering, it will fail
    // if the data actually does have missing values
    getCapabilities().testWithFail(insts);
       
    if (getNormalize()) {
      m_Filter = new Normalize();
      m_Filter.setInputFormat(insts);
      insts = Filter.useFilter(insts, m_Filter);
    }
   
    Vector vy = new Vector();
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

      data = Filter.useFilter(data, m_nominalToBinary);
    }
   
    if (!m_dontNormalize && data.numInstances() > 0) {

      m_normalize = new Normalize();
      m_normalize.setInputFormat(data);
      data = Filter.useFilter(data, m_normalize);
    }
   
    m_weights = new double[data.numAttributes() + 1];
View Full Code Here

Examples of weka.filters.unsupervised.attribute.Normalize

        if (getConvertNominalToBinary()) {
            insts = nominalToBinary(insts);
        }

        if (getNormalize()) {
            m_Filter = new Normalize();
            m_Filter.setInputFormat(insts);
            insts = Filter.useFilter(insts, m_Filter);
        }

        int[] vy = new int[insts.numInstances()];
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.