Package de.lmu.ifi.dbs.elki.logging.progress

Examples of de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress


   * @param distFunc the distance function
   * @param clusterOrder the cluster order to extract the clusters from
   * @return the extracted clusters
   */
  private Map<BitSet, List<Pair<BitSet, ArrayModifiableDBIDs>>> extractClusters(Relation<V> database, DiSHDistanceFunction.Instance<V> distFunc, ClusterOrderResult<PreferenceVectorBasedCorrelationDistance> clusterOrder) {
    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Extract Clusters", database.size(), logger) : null;
    int processed = 0;
    Map<BitSet, List<Pair<BitSet, ArrayModifiableDBIDs>>> clustersMap = new HashMap<BitSet, List<Pair<BitSet, ArrayModifiableDBIDs>>>();
    Map<DBID, ClusterOrderEntry<PreferenceVectorBasedCorrelationDistance>> entryMap = new HashMap<DBID, ClusterOrderEntry<PreferenceVectorBasedCorrelationDistance>>();
    Map<DBID, Pair<BitSet, ArrayModifiableDBIDs>> entryToClusterMap = new HashMap<DBID, Pair<BitSet, ArrayModifiableDBIDs>>();
    for(Iterator<ClusterOrderEntry<PreferenceVectorBasedCorrelationDistance>> it = clusterOrder.iterator(); it.hasNext();) {
      ClusterOrderEntry<PreferenceVectorBasedCorrelationDistance> entry = it.next();
      entryMap.put(entry.getID(), entry);

      V object = database.get(entry.getID());
      BitSet preferenceVector = entry.getReachability().getCommonPreferenceVector();

      // get the list of (parallel) clusters for the preference vector
      List<Pair<BitSet, ArrayModifiableDBIDs>> parallelClusters = clustersMap.get(preferenceVector);
      if(parallelClusters == null) {
        parallelClusters = new ArrayList<Pair<BitSet, ArrayModifiableDBIDs>>();
        clustersMap.put(preferenceVector, parallelClusters);
      }

      // look for the proper cluster
      Pair<BitSet, ArrayModifiableDBIDs> cluster = null;
      for(Pair<BitSet, ArrayModifiableDBIDs> c : parallelClusters) {
        V c_centroid = DatabaseUtil.centroid(database, c.second, c.first);
        PreferenceVectorBasedCorrelationDistance dist = distFunc.correlationDistance(object, c_centroid, preferenceVector, preferenceVector);
        if(dist.getCorrelationValue() == entry.getReachability().getCorrelationValue()) {
          double d = distFunc.weightedDistance(object, c_centroid, dist.getCommonPreferenceVector());
          if(d <= 2 * epsilon) {
            cluster = c;
            break;
          }
        }
      }
      if(cluster == null) {
        cluster = new Pair<BitSet, ArrayModifiableDBIDs>(preferenceVector, DBIDUtil.newArray());
        parallelClusters.add(cluster);
      }
      cluster.second.add(entry.getID());
      entryToClusterMap.put(entry.getID(), cluster);

      if(progress != null) {
        progress.setProcessed(++processed, logger);
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }

    if(logger.isDebuggingFiner()) {
      StringBuffer msg = new StringBuffer("Step 0");
      for(List<Pair<BitSet, ArrayModifiableDBIDs>> clusterList : clustersMap.values()) {
View Full Code Here


    partitionDistanceQuery = (FilteredLocalPCABasedDistanceFunction.Instance<V, LocalProjectionIndex<V, ?>, D>) partitionDistanceFunction.instantiate(relation);
    LocalProjectionIndex<V, ?> preprocin = partitionDistanceQuery.getIndex();

    // partitioning
    Map<Integer, ModifiableDBIDs> partitionMap = new HashMap<Integer, ModifiableDBIDs>();
    FiniteProgress partitionProgress = logger.isVerbose() ? new FiniteProgress("Partitioning", relation.size(), logger) : null;
    int processed = 1;

    for(DBID id : relation.iterDBIDs()) {
      Integer corrdim = preprocin.getLocalProjection(id).getCorrelationDimension();

      if(!partitionMap.containsKey(corrdim)) {
        partitionMap.put(corrdim, DBIDUtil.newArray());
      }

      partitionMap.get(corrdim).add(id);
      if(partitionProgress != null) {
        partitionProgress.setProcessed(processed++, logger);
      }
    }

    if(partitionProgress != null) {
      partitionProgress.ensureCompleted(logger);
    }
    if(logger.isVerbose()) {
      for(Integer corrDim : partitionMap.keySet()) {
        ModifiableDBIDs list = partitionMap.get(corrDim);
        logger.verbose("Partition [corrDim = " + corrDim + "]: " + list.size() + " objects.");
View Full Code Here

    try {
      processedIDs = DBIDUtil.newHashSet(relation.size());
      noiseDim = DatabaseUtil.dimensionality(relation);

      FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("CASH Clustering", relation.size(), logger) : null;
      Clustering<Model> result = doRun(relation, progress);
      if(progress != null) {
        progress.ensureCompleted(logger);
      }

      if(logger.isVerbose()) {
        StringBuffer msg = new StringBuffer();
        for(Cluster<Model> c : result.getAllClusters()) {
View Full Code Here

      NeighborSetPredicate innerinst = inner.instantiate(database);

      final WritableDataStore<DBIDs> store = DataStoreUtil.makeStorage(database.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_STATIC | DataStoreFactory.HINT_TEMP, DBIDs.class);

      // Expand multiple steps
      FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Expanding neighborhoods", database.size(), logger) : null;
      for(final DBID id : database.iterDBIDs()) {
        ModifiableDBIDs res = DBIDUtil.newHashSet(id);
        DBIDs todo = id;
        for(int i = 0; i < steps; i++) {
          ModifiableDBIDs ntodo = DBIDUtil.newHashSet();
          for(final DBID oid : todo) {
            DBIDs add = innerinst.getNeighborDBIDs(oid);
            if(add != null) {
              for (DBID nid: add) {
                if (res.contains(add)) {
                  continue;
                }
                ntodo.add(nid);
                res.add(nid);
              }
            }
          }
          if (ntodo.size() == 0) {
            continue;
          }
          todo = ntodo;
        }
        store.put(id, res);
        if(progress != null) {
          progress.incrementProcessed(logger);
        }
      }
      if(progress != null) {
        progress.ensureCompleted(logger);
      }

      return store;
    }
View Full Code Here

    pi = store.getStorage(0, DBID.class);
    lambda = store.getStorage(1, distCls);
    // Temporary storage for m.
    WritableDataStore<D> m = DataStoreUtil.makeStorage(distQuery.getRelation().getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, distCls);

    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Clustering", distQuery.getRelation().size(), logger) : null;
    // has to be an array for monotonicity reasons!
    ModifiableDBIDs processedIDs = DBIDUtil.newArray(distQuery.getRelation().size());

    // apply the algorithm
    for(DBID id : distQuery.getRelation().iterDBIDs()) {
      step1(id);
      step2(id, processedIDs, distQuery, m);
      step3(id, processedIDs, m);
      step4(id, processedIDs);

      processedIDs.add(id);

      if(progress != null) {
        progress.incrementProcessed(logger);
      }
    }

    if(progress != null) {
      progress.ensureCompleted(logger);
    }
    // We don't need m anymore.
    m.destroy();
    m = null;
View Full Code Here

   * @param minclusters Minimum number of clusters to extract
   *
   * @return Hierarchical clustering
   */
  private Clustering<DendrogramModel<D>> extractClusters(DBIDs ids, final DataStore<DBID> pi, final DataStore<D> lambda, int minclusters) {
    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Extracting clusters", ids.size(), logger) : null;

    // stopdist
    D stopdist = null;
    // sort by lambda
    ArrayModifiableDBIDs order = DBIDUtil.newArray(ids);
    Collections.sort(order, new CompareByLambda<D>(lambda));
    int index = ids.size() - minclusters - 1;
    while(index >= 0) {
      if(lambda.get(order.get(index)).equals(lambda.get(order.get(index + 1)))) {
        index--;
      }
      else {
        stopdist = lambda.get(order.get(index));
        break;
      }
    }

    // extract the child clusters
    Map<DBID, ModifiableDBIDs> cluster_ids = new HashMap<DBID, ModifiableDBIDs>();
    Map<DBID, D> cluster_distances = new HashMap<DBID, D>();
    for(DBID id : ids) {
      DBID lastObjectInCluster = lastObjectInCluster(id, stopdist, pi, lambda);
      ModifiableDBIDs cluster = cluster_ids.get(lastObjectInCluster);
      if(cluster == null) {
        cluster = DBIDUtil.newArray();
        cluster_ids.put(lastObjectInCluster, cluster);
      }
      cluster.add(id);

      D lambda_id = lambda.get(id);
      if(stopdist != null && lambda_id.compareTo(stopdist) <= 0 && (cluster_distances.get(lastObjectInCluster) == null || lambda_id.compareTo(cluster_distances.get(lastObjectInCluster)) > 0)) {
        cluster_distances.put(lastObjectInCluster, lambda_id);
      }

      // Decrement counter
      if(progress != null) {
        progress.incrementProcessed(logger);
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }

    // build hierarchy
    final Clustering<DendrogramModel<D>> dendrogram = new Clustering<DendrogramModel<D>>("Single-Link-Dendrogram", "slink-dendrogram");
    ModifiableHierarchy<Cluster<DendrogramModel<D>>> hier = new HierarchyHashmapList<Cluster<DendrogramModel<D>>>();
View Full Code Here

    ModifiableHierarchy<Cluster<Model>> hier = new HierarchyHashmapList<Cluster<Model>>();
    Map<DBID, Cluster<Model>> clusters = new HashMap<DBID, Cluster<Model>>();
    Map<DBID, ModifiableDBIDs> cids = new HashMap<DBID, ModifiableDBIDs>();

    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Extracting clusters", ids.size(), logger) : null;

    for(DBID cur : order) {
      DBID dest = pi.get(cur);
      D l = lambda.get(cur);
      // logger.debugFine("DBID " + cur.toString() + " dist: " + l.toString());
      if(stopdist != null && stopdist.compareTo(l) > 0) {
        ModifiableDBIDs curset = cids.remove(cur);
        ModifiableDBIDs destset = cids.get(dest);
        if(destset == null) {
          if(curset != null) {
            destset = curset;
          }
          else {
            destset = DBIDUtil.newHashSet();
            destset.add(cur);
          }
          destset.add(dest);
          cids.put(dest, destset);
        }
        else {
          if(curset != null) {
            destset.addDBIDs(curset);
          }
          else {
            destset.add(cur);
          }
        }
        curdist = l;
      }
      else {
        if(curdist == null || l.compareTo(curdist) > 0) {
          // New distance level reached. Post-process the current objects
          for(Entry<DBID, ModifiableDBIDs> ent : cids.entrySet()) {
            DBID key = ent.getKey();
            ModifiableDBIDs clusids = ent.getValue();
            // Make a new cluster
            String cname = "Cluster_" + key.toString() + "_" + curdist.toString();
            Cluster<Model> cluster = new Cluster<Model>(cname, clusids, ClusterModel.CLUSTER, hier);
            // Collect child clusters and clean up the cluster ids, keeping only
            // "new" objects.
            Iterator<DBID> iter = clusids.iterator();
            while(iter.hasNext()) {
              DBID child = iter.next();
              Cluster<Model> chiclus = clusters.get(child);
              if(chiclus != null) {
                hier.add(cluster, chiclus);
                clusters.remove(child);
                iter.remove();
              }
            }
            clusters.put(key, cluster);
          }
          if(logger.isDebuggingFine()) {
            StringBuffer buf = new StringBuffer();
            buf.append("Number of clusters at depth ");
            buf.append((curdist != null ? curdist.toString() : "null"));
            buf.append(": ").append(clusters.size()).append(" ");
            buf.append("last-objects:");
            for(DBID id : clusters.keySet()) {
              buf.append(" ").append(id.toString());
            }
            logger.debugFine(buf.toString());
          }
          cids.clear();
          curdist = l;
        }
        // Add the current object to the destinations cluster
        {
          ModifiableDBIDs destset = cids.get(dest);
          if(destset == null) {
            destset = DBIDUtil.newHashSet();
            cids.put(dest, destset);
            destset.add(dest);
          }
          destset.add(cur);
        }
      }
      // Decrement counter
      if(progress != null) {
        progress.incrementProcessed(logger);
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }
    // There should be one cluster remaining at infinite distance...
    if(clusters.size() != 1) {
      logger.warning("Single-link is expected to have a single cluster at the top level!");
      return null;
View Full Code Here

   * @return Result
   */
  public Clustering<Model> run(Database database, Relation<O> relation) {
    SimilarityQuery<O, IntegerDistance> snnInstance = similarityFunction.instantiate(relation);

    FiniteProgress objprog = logger.isVerbose() ? new FiniteProgress("SNNClustering", relation.size(), logger) : null;
    IndefiniteProgress clusprog = logger.isVerbose() ? new IndefiniteProgress("Number of clusters", logger) : null;
    resultList = new ArrayList<ModifiableDBIDs>();
    noise = DBIDUtil.newHashSet();
    processedIDs = DBIDUtil.newHashSet(relation.size());
    if(relation.size() >= minpts) {
      for(DBID id : snnInstance.getRelation().iterDBIDs()) {
        if(!processedIDs.contains(id)) {
          expandCluster(snnInstance, id, objprog, clusprog);
          if(processedIDs.size() == relation.size() && noise.size() == 0) {
            break;
          }
        }
        if(objprog != null && clusprog != null) {
          objprog.setProcessed(processedIDs.size(), logger);
          clusprog.setProcessed(resultList.size(), logger);
        }
      }
    }
    else {
      for(DBID id : snnInstance.getRelation().iterDBIDs()) {
        noise.add(id);
        if(objprog != null && clusprog != null) {
          objprog.setProcessed(noise.size(), logger);
          clusprog.setProcessed(resultList.size(), logger);
        }
      }
    }
    // Finish progress logging
    if(objprog != null && clusprog != null) {
      objprog.ensureCompleted(logger);
      clusprog.setCompleted(logger);
    }

    Clustering<Model> result = new Clustering<Model>("Shared-Nearest-Neighbor Clustering", "snn-clustering");
    for(Iterator<ModifiableDBIDs> resultListIter = resultList.iterator(); resultListIter.hasNext();) {
View Full Code Here

    final NeighborSetPredicate npred = getNeighborSetPredicateFactory().instantiate(nrel);

    WritableDataStore<Double> errors = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_TEMP, Double.class);
    WritableDataStore<Double> scores = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_STATIC, Double.class);

    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Computing trimmed means", relation.size(), logger) : null;
    for(DBID id : relation.iterDBIDs()) {
      DBIDs neighbors = npred.getNeighborDBIDs(id);
      int num = 0;
      double[] values = new double[neighbors.size()];
      // calculate trimmedMean
      for(DBID n : neighbors) {
        values[num] = relation.get(n).doubleValue(1);
        num++;
      }

      // calculate local trimmed Mean and error term
      final double tm;
      if(num > 0) {
        int left = (int) Math.floor(p * (num - 1));
        int right = (int) Math.floor((1 - p) * (num - 1));
        Arrays.sort(values, 0, num);
        Mean mean = new Mean();
        for(int i = left; i <= right; i++) {
          mean.put(values[i]);
        }
        tm = mean.getMean();
      }
      else {
        tm = relation.get(id).doubleValue(1);
      }
      // Error: deviation from trimmed mean
      errors.put(id, relation.get(id).doubleValue(1) - tm);

      if(progress != null) {
        progress.incrementProcessed(logger);
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }

    if(logger.isVerbose()) {
      logger.verbose("Computing median error.");
    }
View Full Code Here

    this.distanceFunction = distanceFunction;
    this.lambda = lambda;
  }

  public Clustering<Model> run(Database database, Relation<V> relation) throws IllegalStateException {
    FiniteProgress objprog = getLogger().isVerbose() ? new FiniteProgress("Processing objects", relation.size(), getLogger()) : null;
    IndefiniteProgress clusprog = getLogger().isVerbose() ? new IndefiniteProgress("Number of clusters", getLogger()) : null;
    resultList = new ArrayList<ModifiableDBIDs>();
    noise = DBIDUtil.newHashSet();
    processedIDs = DBIDUtil.newHashSet(relation.size());

    LocallyWeightedDistanceFunction.Instance<V> distFunc = distanceFunction.instantiate(relation);
    RangeQuery<V, DoubleDistance> rangeQuery = database.getRangeQuery(distFunc);

    if(relation.size() >= minpts) {
      for(DBID id : relation.iterDBIDs()) {
        if(!processedIDs.contains(id)) {
          expandCluster(distFunc, rangeQuery, id, objprog, clusprog);
          if(processedIDs.size() == relation.size() && noise.size() == 0) {
            break;
          }
        }
        if(objprog != null && clusprog != null) {
          objprog.setProcessed(processedIDs.size(), getLogger());
          clusprog.setProcessed(resultList.size(), getLogger());
        }
      }
    }
    else {
      for(DBID id : relation.iterDBIDs()) {
        noise.add(id);
        if(objprog != null && clusprog != null) {
          objprog.setProcessed(processedIDs.size(), getLogger());
          clusprog.setProcessed(resultList.size(), getLogger());
        }
      }
    }

    if(objprog != null && clusprog != null) {
      objprog.setProcessed(processedIDs.size(), getLogger());
      clusprog.setProcessed(resultList.size(), getLogger());
    }

    Clustering<Model> result = new Clustering<Model>(getLongResultName(), getShortResultName());
    for(Iterator<ModifiableDBIDs> resultListIter = resultList.iterator(); resultListIter.hasNext();) {
      Cluster<Model> c = new Cluster<Model>(resultListIter.next(), ClusterModel.CLUSTER);
      result.addCluster(c);
    }

    Cluster<Model> n = new Cluster<Model>(noise, true, ClusterModel.CLUSTER);
    result.addCluster(n);

    if(objprog != null && clusprog != null) {
      objprog.setProcessed(processedIDs.size(), getLogger());
      clusprog.setProcessed(resultList.size(), getLogger());
    }
    // Signal that the progress has completed.
    if(objprog != null && clusprog != null) {
      objprog.ensureCompleted(getLogger());
      clusprog.setCompleted(getLogger());
    }
    return result;
  }
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.