Package de.lmu.ifi.dbs.elki.logging.progress

Examples of de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress


    final int size = order.size();

    // When the logging is in the outer loop, it's just 2*size (providing enough
    // resolution)
    final int ltotal = 2 * size; // size * (size + 1);
    FiniteProgress prog = logger.isVerbose() ? new FiniteProgress("Similarity Matrix Image", ltotal, logger) : null;

    // Note: we assume that we have an efficient distance cache available,
    // since we are using 2*O(n*n) distance computations.
    DoubleMinMax minmax = new DoubleMinMax();
    for(int x = 0; x < size; x++) {
      DBID id1 = order.get(x);
      for(int y = x; y < size; y++) {
        DBID id2 = order.get(y);
        final double dist = dq.distance(id1, id2).doubleValue();
        if(!Double.isNaN(dist) && !Double.isInfinite(dist) /* && dist > 0.0 */) {
          if(!skipzero || dist != 0.0) {
            minmax.put(dist);
          }
        }
      }
      if(prog != null) {
        prog.incrementProcessed(logger);
      }
    }

    double zoom = minmax.getMax() - minmax.getMin();
    if(zoom > 0.0) {
      zoom = 1. / zoom;
    }
    LinearScaling scale = new LinearScaling(zoom, -minmax.getMin() * zoom);
    BufferedImage img = new BufferedImage(size, size, BufferedImage.TYPE_INT_RGB);
    for(int x = 0; x < size; x++) {
      DBID id1 = order.get(x);
      for(int y = x; y < size; y++) {
        DBID id2 = order.get(y);
        double ddist = dq.distance(id1, id2).doubleValue();
        if(ddist > 0.0) {
          ddist = scale.getScaled(ddist);
        }
        // Apply extra scaling
        if(scaling != null) {
          ddist = scaling.getScaled(ddist);
        }
        int dist = 0xFF & (int) (255 * ddist);
        int col = 0xff000000 | (dist << 16) | (dist << 8) | dist;
        img.setRGB(x, y, col);
        img.setRGB(y, x, col);
      }
      if(prog != null) {
        prog.incrementProcessed(logger);
      }
    }
    if(prog != null) {
      prog.ensureCompleted(logger);
    }

    return new SimilarityMatrix(img, relation, order);
  }
View Full Code Here


    storage = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, BitSet.class);

    StringBuffer msg = new StringBuffer();

    long start = System.currentTimeMillis();
    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Preprocessing preference vector", relation.size(), logger) : null;

    KNNQuery<V, DoubleDistance> knnQuery = QueryUtil.getKNNQuery(relation, EuclideanDistanceFunction.STATIC, k);

    Iterator<DBID> it = relation.iterDBIDs();
    while(it.hasNext()) {
      DBID id = it.next();

      if(logger.isDebugging()) {
        msg.append("\n\nid = ").append(id);
        ///msg.append(" ").append(database.getObjectLabelQuery().get(id));
        msg.append("\n knns: ");
      }

      KNNResult<DoubleDistance> knns = knnQuery.getKNNForDBID(id, k);
      BitSet preferenceVector = determinePreferenceVector(relation, id, knns.asDBIDs(), msg);
      storage.put(id, preferenceVector);

      if(progress != null) {
        progress.incrementProcessed(logger);
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }

    if(logger.isDebugging()) {
      logger.debugFine(msg.toString());
    }
View Full Code Here

      getLogger().verbose("Assigning nearest neighbor lists to database objects");
    }
    storage = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, ArrayDBIDs.class);
    KNNQuery<O, D> knnquery = QueryUtil.getKNNQuery(relation, distanceFunction, numberOfNeighbors);

    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("assigning nearest neighbor lists", relation.size(), getLogger()) : null;
    for(DBID id : relation.iterDBIDs()) {
      ArrayModifiableDBIDs neighbors = DBIDUtil.newArray(numberOfNeighbors);
      KNNResult<D> kNN = knnquery.getKNNForDBID(id, numberOfNeighbors);
      for(int i = 0; i < kNN.size(); i++) {
        final DBID nid = kNN.get(i).getDBID();
        // if(!id.equals(nid)) {
        neighbors.add(nid);
        // }
        // Size limitation to exactly numberOfNeighbors
        if(neighbors.size() >= numberOfNeighbors) {
          break;
        }
      }
      neighbors.sort();
      storage.put(id, neighbors);
      if(progress != null) {
        progress.incrementProcessed(getLogger());
      }
    }
    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }
  }
View Full Code Here

    if(getLogger().isVerbose()) {
      getLogger().verbose("Approximating nearest neighbor lists to database objects");
    }

    List<E> leaves = index.getLeaves();
    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("Processing leaf nodes.", leaves.size(), getLogger()) : null;
    for(E leaf : leaves) {
      N node = index.getNode(leaf);
      int size = node.getNumEntries();
      pagesize.put(size);
      if(getLogger().isDebuggingFinest()) {
        getLogger().debugFinest("NumEntires = " + size);
      }
      // Collect the ids in this node.
      DBID[] ids = new DBID[size];
      for(int i = 0; i < size; i++) {
        ids[i] = ((LeafEntry) node.getEntry(i)).getDBID();
      }
      HashMap<DBIDPair, D> cache = new HashMap<DBIDPair, D>(size * size * 3 / 8);
      for(DBID id : ids) {
        KNNHeap<D> kNN = new KNNHeap<D>(k, distanceQuery.infiniteDistance());
        for(DBID id2 : ids) {
          DBIDPair key = DBIDUtil.newPair(id, id2);
          D d = cache.remove(key);
          if(d != null) {
            // consume the previous result.
            kNN.add(d, id2);
          }
          else {
            // compute new and store the previous result.
            d = distanceQuery.distance(id, id2);
            kNN.add(d, id2);
            // put it into the cache, but with the keys reversed
            key = DBIDUtil.newPair(id2, id);
            cache.put(key, d);
          }
        }
        ksize.put(kNN.size());
        storage.put(id, kNN.toKNNList());
      }
      if(getLogger().isDebugging()) {
        if(cache.size() > 0) {
          getLogger().warning("Cache should be empty after each run, but still has " + cache.size() + " elements.");
        }
      }
      if(progress != null) {
        progress.incrementProcessed(getLogger());
      }
    }
    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }
    if(getLogger().isVerbose()) {
      getLogger().verbose("Average page size = " + pagesize.getMean() + " +- " + pagesize.getSampleStddev());
      getLogger().verbose("On average, " + ksize.getMean() + " +- " + ksize.getSampleStddev() + " neighbors returned.");
    }
View Full Code Here

  @Override
  protected void preprocess() {
    createStorage();
    materialized_RkNN = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT, Set.class);
    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("Materializing k nearest neighbors and reverse k nearest neighbors (k=" + k + ")", relation.size(), getLogger()) : null;
    materializeKNNAndRKNNs(DBIDUtil.ensureArray(relation.getDBIDs()), progress);
  }
View Full Code Here

    storage = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, ProjectionResult.class);

    long start = System.currentTimeMillis();
    RangeQuery<NV, D> rangeQuery = QueryUtil.getRangeQuery(relation, rangeQueryDistanceFunction);

    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress(this.getClass().getName(), relation.size(), getLogger()) : null;
    for(DBID id : relation.iterDBIDs()) {
      List<DistanceResultPair<D>> neighbors = rangeQuery.getRangeForDBID(id, epsilon);

      final P pres;
      if(neighbors.size() >= minpts) {
        pres = computeProjection(id, neighbors, relation);
      }
      else {
        DistanceResultPair<D> firstQR = neighbors.get(0);
        neighbors = new ArrayList<DistanceResultPair<D>>();
        neighbors.add(firstQR);
        pres = computeProjection(id, neighbors, relation);
      }
      storage.put(id, pres);

      if(progress != null) {
        progress.incrementProcessed(getLogger());
      }
    }
    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }

    long end = System.currentTimeMillis();
    // TODO: re-add timing code!
    if(true) {
View Full Code Here

    if(getLogger().isVerbose()) {
      getLogger().verbose("Approximating nearest neighbor lists to database objects");
    }

    List<E> leaves = index.getLeaves();
    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("Processing leaf nodes.", leaves.size(), getLogger()) : null;
    for(E leaf : leaves) {
      N node = index.getNode(leaf);
      int size = node.getNumEntries();
      pagesize.put(size);
      if(getLogger().isDebuggingFinest()) {
        getLogger().debugFinest("NumEntires = " + size);
      }
      // Collect the ids in this node.
      DBID[] ids = new DBID[size];
      for(int i = 0; i < size; i++) {
        ids[i] = ((LeafEntry) node.getEntry(i)).getDBID();
      }
      HashMap<DBIDPair, D> cache = new HashMap<DBIDPair, D>(size * size * 3 / 8);
      for(DBID id : ids) {
        KNNHeap<D> kNN = new KNNHeap<D>(k, distanceQuery.infiniteDistance());
        for(DBID id2 : ids) {
          DBIDPair key = DBIDUtil.newPair(id, id2);
          D d = cache.remove(key);
          if(d != null) {
            // consume the previous result.
            kNN.add(d, id2);
          }
          else {
            // compute new and store the previous result.
            d = distanceQuery.distance(id, id2);
            kNN.add(d, id2);
            // put it into the cache, but with the keys reversed
            key = DBIDUtil.newPair(id2, id);
            cache.put(key, d);
          }
        }
        ksize.put(kNN.size());
        storage.put(id, kNN.toSortedArrayList());
      }
      if(getLogger().isDebugging()) {
        if(cache.size() > 0) {
          getLogger().warning("Cache should be empty after each run, but still has " + cache.size() + " elements.");
        }
      }
      if(progress != null) {
        progress.incrementProcessed(getLogger());
      }
    }
    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }
    if(getLogger().isVerbose()) {
      getLogger().verbose("Average page size = " + pagesize.getMean() + " +- " + pagesize.getSampleStddev());
      getLogger().verbose("On average, " + ksize.getMean() + " +- " + ksize.getSampleStddev() + " neighbors returned.");
    }
View Full Code Here

      getLogger().verbose("Assigning nearest neighbor lists to database objects");
    }
    storage = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, SetDBIDs.class);
    KNNQuery<O, D> knnquery = QueryUtil.getKNNQuery(relation, distanceFunction, numberOfNeighbors);

    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("assigning nearest neighbor lists", relation.size(), getLogger()) : null;
    for(DBID id : relation.iterDBIDs()) {
      TreeSetModifiableDBIDs neighbors = DBIDUtil.newTreeSet(numberOfNeighbors);
      List<DistanceResultPair<D>> kNN = knnquery.getKNNForDBID(id, numberOfNeighbors);
      for(int i = 0; i < kNN.size(); i++) {
        final DBID nid = kNN.get(i).getDBID();
        // if(!id.equals(nid)) {
        neighbors.add(nid);
        // }
        // Size limitation to exaclty numberOfNeighbors
        if(neighbors.size() >= numberOfNeighbors) {
          break;
        }
      }
      storage.put(id, neighbors);
      if(progress != null) {
        progress.incrementProcessed(getLogger());
      }
    }
    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }
  }
View Full Code Here

    if(getLogger().isVerbose()) {
      getLogger().verbose("Approximating nearest neighbor lists to database objects");
    }

    List<E> leaves = index.getLeaves();
    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("Processing leaf nodes.", leaves.size(), getLogger()) : null;
    for(E leaf : leaves) {
      N node = index.getNode(leaf);
      int size = node.getNumEntries();
      pagesize.put(size);
      if(getLogger().isDebuggingFinest()) {
        getLogger().debugFinest("NumEntires = " + size);
      }
      // Collect the ids in this node.
      DBID[] ids = new DBID[size];
      for(int i = 0; i < size; i++) {
        ids[i] = ((LeafEntry) node.getEntry(i)).getDBID();
      }
      HashMap<DBIDPair, D> cache = new HashMap<DBIDPair, D>(size * size * 3 / 8);
      for(DBID id : ids) {
        KNNHeap<D> kNN = new KNNHeap<D>(k, distanceQuery.infiniteDistance());
        for(DBID id2 : ids) {
          DBIDPair key = DBIDUtil.newPair(id, id2);
          D d = cache.remove(key);
          if(d != null) {
            // consume the previous result.
            kNN.add(d, id2);
          }
          else {
            // compute new and store the previous result.
            d = distanceQuery.distance(id, id2);
            kNN.add(d, id2);
            // put it into the cache, but with the keys reversed
            key = DBIDUtil.newPair(id2, id);
            cache.put(key, d);
          }
        }
        ksize.put(kNN.size());
        storage.put(id, kNN.toKNNList());
      }
      if(getLogger().isDebugging()) {
        if(cache.size() > 0) {
          getLogger().warning("Cache should be empty after each run, but still has " + cache.size() + " elements.");
        }
      }
      if(progress != null) {
        progress.incrementProcessed(getLogger());
      }
    }
    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }
    if(getLogger().isVerbose()) {
      getLogger().verbose("Average page size = " + pagesize.getMean() + " +- " + pagesize.getSampleStddev());
      getLogger().verbose("On average, " + ksize.getMean() + " +- " + ksize.getSampleStddev() + " neighbors returned.");
    }
View Full Code Here

    }

    ArrayDBIDs aids = DBIDUtil.ensureArray(relation.getDBIDs());
    int minsize = (int) Math.floor(aids.size() / partitions);

    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Processing partitions.", partitions, logger) : null;
    for(int part = 0; part < partitions; part++) {
      int size = (partitions * minsize + part >= aids.size()) ? minsize : minsize + 1;
      // Collect the ids in this node.
      ArrayModifiableDBIDs ids = DBIDUtil.newArray(size);
      for(int i = 0; i < size; i++) {
        assert (size * partitions + part < aids.size());
        ids.add(aids.get(i * partitions + part));
      }
      HashMap<DBIDPair, D> cache = new HashMap<DBIDPair, D>(size * size * 3 / 8);
      for(DBID id : ids) {
        KNNHeap<D> kNN = new KNNHeap<D>(k, distanceQuery.infiniteDistance());
        for(DBID id2 : ids) {
          DBIDPair key = DBIDUtil.newPair(id, id2);
          D d = cache.remove(key);
          if(d != null) {
            // consume the previous result.
            kNN.add(d, id2);
          }
          else {
            // compute new and store the previous result.
            d = distanceQuery.distance(id, id2);
            kNN.add(d, id2);
            // put it into the cache, but with the keys reversed
            key = DBIDUtil.newPair(id2, id);
            cache.put(key, d);
          }
        }
        ksize.put(kNN.size());
        storage.put(id, kNN.toKNNList());
      }
      if(logger.isDebugging()) {
        if(cache.size() > 0) {
          logger.warning("Cache should be empty after each run, but still has " + cache.size() + " elements.");
        }
      }
      if(progress != null) {
        progress.incrementProcessed(logger);
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }
    if(logger.isVerbose()) {
      logger.verbose("On average, " + ksize.getMean() + " +- " + ksize.getSampleStddev() + " neighbors returned.");
    }
  }
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.