Package de.lmu.ifi.dbs.elki.logging.progress

Examples of de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress


    WritableDataStore<KNNHeap<D>> knnHeaps = DataStoreUtil.makeStorage(ids, DataStoreFactory.HINT_TEMP | DataStoreFactory.HINT_HOT, KNNHeap.class);

    try {
      // data pages of s
      List<E> ps_candidates = index.getLeaves();
      FiniteProgress progress = logger.isVerbose() ? new FiniteProgress(this.getClass().getName(), relation.size(), logger) : null;
      IndefiniteProgress pageprog = logger.isVerbose() ? new IndefiniteProgress("Number of processed data pages", logger) : null;
      if(logger.isDebugging()) {
        logger.debugFine("# ps = " + ps_candidates.size());
      }
      // data pages of r
      List<E> pr_candidates = new ArrayList<E>(ps_candidates);
      if(logger.isDebugging()) {
        logger.debugFine("# pr = " + pr_candidates.size());
      }
      int processed = 0;
      int processedPages = 0;
      boolean up = true;
      for(E pr_entry : pr_candidates) {
        N pr = index.getNode(pr_entry);
        D pr_knn_distance = distq.infiniteDistance();
        if(logger.isDebugging()) {
          logger.debugFine(" ------ PR = " + pr);
        }
        // create for each data object a knn list
        for(int j = 0; j < pr.getNumEntries(); j++) {
          knnHeaps.put(((LeafEntry) pr.getEntry(j)).getDBID(), new KNNHeap<D>(k, distq.infiniteDistance()));
        }

        if(up) {
          for(E ps_entry : ps_candidates) {
            D distance = distFunction.minDist(pr_entry, ps_entry);

            if(distance.compareTo(pr_knn_distance) <= 0) {
              N ps = index.getNode(ps_entry);
              pr_knn_distance = processDataPages(distq, pr, ps, knnHeaps, pr_knn_distance);
            }
          }
          up = false;
        }

        else {
          for(int s = ps_candidates.size() - 1; s >= 0; s--) {
            E ps_entry = ps_candidates.get(s);
            D distance = distFunction.minDist(pr_entry, ps_entry);

            if(distance.compareTo(pr_knn_distance) <= 0) {
              N ps = index.getNode(ps_entry);
              pr_knn_distance = processDataPages(distq, pr, ps, knnHeaps, pr_knn_distance);
            }
          }
          up = true;
        }

        processed += pr.getNumEntries();

        if(progress != null && pageprog != null) {
          progress.setProcessed(processed, logger);
          pageprog.setProcessed(processedPages++, logger);
        }
      }
      if(pageprog != null) {
        pageprog.setCompleted(logger);
View Full Code Here


    AggregatingHistogram<Double, Double> hist = AggregatingHistogram.DoubleSumHistogram(numbins, 0.0, 1.0);

    if(logger.isVerbose()) {
      logger.verbose("Processing points...");
    }
    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Computing ROC AUC values", relation.size(), logger) : null;

    MeanVariance mv = new MeanVariance();
    // sort neighbors
    for(Cluster<?> clus : split) {
      for(DBID i1 : clus.getIDs()) {
        List<DistanceResultPair<D>> knn = knnQuery.getKNNForDBID(i1, relation.size());
        double result = ROC.computeROCAUCDistanceResult(relation.size(), clus, knn);

        mv.put(result);
        hist.aggregate(result, 1. / relation.size());

        if(progress != null) {
          progress.incrementProcessed(logger);
        }
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }

    // Transform Histogram into a Double Vector array.
    Collection<DoubleVector> res = new ArrayList<DoubleVector>(relation.size());
    for(Pair<Double, Double> pair : hist) {
View Full Code Here

    KNNQuery<O, D> knnQuery = database.getKNNQuery(distanceQuery, k);

    if(logger.isVerbose()) {
      logger.verbose("Computing the kNN outlier degree (distance to the k nearest neighbor)");
    }
    FiniteProgress progressKNNDistance = logger.isVerbose() ? new FiniteProgress("kNN distance for objects", relation.size(), logger) : null;

    DoubleMinMax minmax = new DoubleMinMax();
    WritableDataStore<Double> knno_score = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_STATIC, Double.class);
    // compute distance to the k nearest neighbor.
    for(DBID id : distanceQuery.getRelation().iterDBIDs()) {
      // distance to the kth nearest neighbor
      final List<DistanceResultPair<D>> knns = knnQuery.getKNNForDBID(id, k);
      final int last = Math.min(k - 1, knns.size() - 1);

      double dkn = knns.get(last).getDistance().doubleValue();
      knno_score.put(id, dkn);

      minmax.put(dkn);

      if(progressKNNDistance != null) {
        progressKNNDistance.incrementProcessed(logger);
      }
    }
    if(progressKNNDistance != null) {
      progressKNNDistance.ensureCompleted(logger);
    }
    Relation<Double> scoreres = new MaterializedRelation<Double>("kNN Outlier Score", "knn-outlier", TypeUtil.DOUBLE, knno_score, relation.getDBIDs());
    OutlierScoreMeta meta = new BasicOutlierScoreMeta(minmax.getMin(), minmax.getMax(), 0.0, Double.POSITIVE_INFINITY, 0.0);
    return new OutlierResult(meta, scoreres);
  }
View Full Code Here

    // compute LOF_SCORE of each db object
    if(logger.isVerbose()) {
      logger.verbose("Computing LDOFs");
    }
    FiniteProgress progressLDOFs = logger.isVerbose() ? new FiniteProgress("LDOF_SCORE for objects", relation.size(), logger) : null;

    for(DBID id : distFunc.getRelation().iterDBIDs()) {
      List<DistanceResultPair<D>> neighbors = knnQuery.getKNNForDBID(id, k);
      int nsize = neighbors.size() - 1;
      // skip the point itself
      double dxp = 0;
      double Dxp = 0;
      for(DistanceResultPair<D> neighbor1 : neighbors) {
        if(neighbor1.getDBID() != id) {
          dxp += neighbor1.getDistance().doubleValue();
          for(DistanceResultPair<D> neighbor2 : neighbors) {
            if(neighbor1.getDBID() != neighbor2.getDBID() && neighbor2.getDBID() != id) {
              Dxp += distFunc.distance(neighbor1.getDBID(), neighbor2.getDBID()).doubleValue();
            }
          }
        }
      }
      dxp /= nsize;
      Dxp /= (nsize * (nsize - 1));
      Double ldof = dxp / Dxp;
      if(ldof.isNaN() || ldof.isInfinite()) {
        ldof = 1.0;
      }
      ldofs.put(id, ldof);
      // update maximum
      ldofminmax.put(ldof);

      if(progressLDOFs != null) {
        progressLDOFs.incrementProcessed(logger);
      }
    }
    if(progressLDOFs != null) {
      progressLDOFs.ensureCompleted(logger);
    }

    // Build result representation.
    Relation<Double> scoreResult = new MaterializedRelation<Double>("LDOF Outlier Score", "ldof-outlier", TypeUtil.DOUBLE, ldofs, relation.getDBIDs());
    OutlierScoreMeta scoreMeta = new QuotientOutlierScoreMeta(ldofminmax.getMin(), ldofminmax.getMax(), 0.0, Double.POSITIVE_INFINITY, LDOF_BASELINE);
View Full Code Here

    final int mindim = dbdim / 2;
    final int maxdim = dbdim - 1;

    ArrayList<OutlierResult> results = new ArrayList<OutlierResult>(num);
    {
      FiniteProgress prog = logger.isVerbose() ? new FiniteProgress("LOF iterations", num, logger) : null;
      for(int i = 0; i < num; i++) {
        BitSet dimset = randomSubspace(dbdim, mindim, maxdim);
        DimensionsSelectingEuclideanDistanceFunction df = new DimensionsSelectingEuclideanDistanceFunction(dimset);
        LOF<NumberVector<?, ?>, DoubleDistance> lof = new LOF<NumberVector<?, ?>, DoubleDistance>(k, df, df);

        // run LOF and collect the result
        OutlierResult result = lof.run(relation);
        results.add(result);
        if(prog != null) {
          prog.incrementProcessed(logger);
        }
      }
      if(prog != null) {
        prog.ensureCompleted(logger);
      }
    }

    WritableDataStore<Double> scores = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_STATIC, Double.class);
    DoubleMinMax minmax = new DoubleMinMax();
    if(breadth) {
      FiniteProgress cprog = logger.isVerbose() ? new FiniteProgress("Combining results", relation.size(), logger) : null;
      HashMap<IterableIterator<DBID>, Relation<Double>> IDVectorOntoScoreVector = new HashMap<IterableIterator<DBID>, Relation<Double>>();

      // Mapping score-sorted DBID-Iterators onto their corresponding scores.
      // We need to initialize them now be able to iterate them "in parallel".
      for(OutlierResult r : results) {
        IDVectorOntoScoreVector.put(r.getOrdering().iter(relation.getDBIDs()), r.getScores());
      }

      // Iterating over the *lines* of the AS_t(i)-matrix.
      for(int i = 0; i < relation.size(); i++) {
        // Iterating over the elements of a line (breadth-first).
        for(IterableIterator<DBID> iter : IDVectorOntoScoreVector.keySet()) {
          if(iter.hasNext()) { // Always true if every algorithm returns a
                               // complete result (one score for every DBID).
            DBID tmpID = iter.next();
            double score = IDVectorOntoScoreVector.get(iter).get(tmpID);
            if(scores.get(tmpID) == null) {
              scores.put(tmpID, score);
              minmax.put(score);
            }
          }
          else {
            logger.warning("Incomplete result: Iterator does not contain |DB| DBIDs");
          }
        }
        // Progress does not take the initial mapping into account.
        if(cprog != null) {
          cprog.incrementProcessed(logger);
        }
      }
      if(cprog != null) {
        cprog.ensureCompleted(logger);
      }
    }
    else {
      FiniteProgress cprog = logger.isVerbose() ? new FiniteProgress("Combining results", relation.size(), logger) : null;
      for(DBID id : relation.iterDBIDs()) {
        double sum = 0.0;
        for(OutlierResult r : results) {
          sum += r.getScores().get(id);
        }
        scores.put(id, sum);
        minmax.put(sum);
        if(cprog != null) {
          cprog.incrementProcessed(logger);
        }
      }
      if(cprog != null) {
        cprog.ensureCompleted(logger);
      }
    }
    OutlierScoreMeta meta = new BasicOutlierScoreMeta(minmax.getMin(), minmax.getMax());
    Relation<Double> scoreres = new MaterializedRelation<Double>("Feature bagging", "fb-outlier", TypeUtil.DOUBLE, scores, relation.getDBIDs());
    return new OutlierResult(meta, scoreres);
View Full Code Here

   *
   * @param relation Data relation to process
   */
  public OutlierResult run(Relation<V> relation) throws IllegalStateException {
    SimilarityQuery<V, IntegerDistance> snnInstance = similarityFunction.instantiate(relation);
    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Assigning Subspace Outlier Degree", relation.size(), logger) : null;
    WritableDataStore<SODModel<?>> sod_models = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_STATIC, SODModel.class);
    DoubleMinMax minmax = new DoubleMinMax();
    for(Iterator<DBID> iter = relation.iterDBIDs(); iter.hasNext();) {
      DBID queryObject = iter.next();
      if(progress != null) {
        progress.incrementProcessed(logger);
      }
      DBIDs knnList = getKNN(relation, snnInstance, queryObject).asDBIDs();
      SODModel<V> model = new SODModel<V>(relation, knnList, alpha, relation.get(queryObject));
      sod_models.put(queryObject, model);
      minmax.put(model.getSod());
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }
    // combine results.
    Relation<SODModel<?>> models = new MaterializedRelation<SODModel<?>>("Subspace Outlier Model", "sod-outlier", new SimpleTypeInformation<SODModel<?>>(SODModel.class), sod_models, relation.getDBIDs());
    OutlierScoreMeta meta = new BasicOutlierScoreMeta(minmax.getMin(), minmax.getMax());
    OutlierResult sodResult = new OutlierResult(meta, new SODProxyScoreResult(models, relation.getDBIDs()));
View Full Code Here

    }

    if(stepprog != null) {
      stepprog.beginStep(2, "Build histogram.", logger);
    }
    final FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Distance computations", relation.size(), logger) : null;
    // iterate per cluster
    final Pair<Long, Long> incFirst = new Pair<Long, Long>(1L, 0L);
    final Pair<Long, Long> incSecond = new Pair<Long, Long>(0L, 1L);
    for(Cluster<?> c1 : split) {
      for(DBID id1 : c1.getIDs()) {
        // in-cluster distances
        DoubleMinMax iminmax = new DoubleMinMax();
        for(DBID id2 : c1.getIDs()) {
          // skip the point itself.
          if(id1 == id2) {
            continue;
          }
          double d = distFunc.distance(id1, id2).doubleValue();

          histogram.aggregate(d, incFirst);

          iminmax.put(d);
        }
        // aggregate
        mimin.put(iminmax.getMin());
        mimax.put(iminmax.getMax());
        midif.put(iminmax.getDiff());
        // min/max
        giminmax.put(iminmax.getMin());
        giminmax.put(iminmax.getMax());

        // other-cluster distances
        DoubleMinMax ominmax = new DoubleMinMax();
        for(Cluster<?> c2 : split) {
          if(c2 == c1) {
            continue;
          }
          for(DBID id2 : c2.getIDs()) {
            // skip the point itself (shouldn't happen though)
            if(id1 == id2) {
              continue;
            }
            double d = distFunc.distance(id1, id2).doubleValue();

            histogram.aggregate(d, incSecond);

            ominmax.put(d);
          }
        }
        // aggregate
        momin.put(ominmax.getMin());
        momax.put(ominmax.getMax());
        modif.put(ominmax.getDiff());
        // min/max
        gominmax.put(ominmax.getMin());
        gominmax.put(ominmax.getMax());
        if(progress != null) {
          progress.incrementProcessed(logger);
        }
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }
    // Update values (only needed for sampling case).
    gminmax.setFirst(Math.min(giminmax.getMin(), gominmax.getMin()));
    gminmax.setSecond(Math.max(giminmax.getMax(), gominmax.getMax()));
View Full Code Here

    KNNQuery<O, D> knnQuery = database.getKNNQuery(distanceQuery, k);

    if(logger.isVerbose()) {
      logger.verbose("computing outlier degree(sum of the distances to the k nearest neighbors");
    }
    FiniteProgress progressKNNWeight = logger.isVerbose() ? new FiniteProgress("KNNWOD_KNNWEIGHT for objects", relation.size(), logger) : null;

    DoubleMinMax minmax = new DoubleMinMax();

    // compute distance to the k nearest neighbor. n objects with the highest
    // distance are flagged as outliers
    WritableDataStore<Double> knnw_score = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_STATIC, Double.class);
    for(DBID id : distanceQuery.getRelation().iterDBIDs()) {
      // compute sum of the distances to the k nearest neighbors

      List<DistanceResultPair<D>> knn = knnQuery.getKNNForDBID(id, k);
      D skn = knn.get(0).getDistance();
      final int last = Math.min(k + 1, knn.size());
      for(int i = 1; i < last; i++) {
        skn = skn.plus(knn.get(i).getDistance());
      }

      double doubleSkn = skn.getValue().doubleValue();
      knnw_score.put(id, doubleSkn);
      minmax.put(doubleSkn);

      if(progressKNNWeight != null) {
        progressKNNWeight.incrementProcessed(logger);
      }
    }
    if(progressKNNWeight != null) {
      progressKNNWeight.ensureCompleted(logger);
    }

    Relation<Double> res = new MaterializedRelation<Double>("Weighted kNN Outlier Score", "knnw-outlier", TypeUtil.DOUBLE, knnw_score, relation.getDBIDs());
    OutlierScoreMeta meta = new BasicOutlierScoreMeta(minmax.getMin(), minmax.getMax(), 0.0, Double.POSITIVE_INFINITY, 0.0);
    return new OutlierResult(meta, res);
View Full Code Here

    AggregatingHistogram<MeanVariance, Double> hist = AggregatingHistogram.MeanVarianceHistogram(numbins, 0.0, 1.0);

    if(logger.isVerbose()) {
      logger.verbose("Processing points...");
    }
    FiniteProgress rocloop = logger.isVerbose() ? new FiniteProgress("Computing ROC AUC values", relation.size(), logger) : null;

    // sort neighbors
    for(Cluster<?> clus : split) {
      ArrayList<FCPair<Double, DBID>> cmem = new ArrayList<FCPair<Double, DBID>>(clus.size());
      Vector av = averages.get(clus).getColumnVector();
      Matrix covm = covmats.get(clus);

      for(DBID i1 : clus.getIDs()) {
        Double d = MathUtil.mahalanobisDistance(covm, av.minus(relation.get(i1).getColumnVector()));
        cmem.add(new FCPair<Double, DBID>(d, i1));
      }
      Collections.sort(cmem);

      for(int ind = 0; ind < cmem.size(); ind++) {
        DBID i1 = cmem.get(ind).getSecond();
        List<DistanceResultPair<D>> knn = knnQuery.getKNNForDBID(i1, relation.size());
        double result = ROC.computeROCAUCDistanceResult(relation.size(), clus, knn);

        hist.aggregate(((double) ind) / clus.size(), result);

        if(rocloop != null) {
          rocloop.incrementProcessed(logger);
        }
      }
    }
    if(rocloop != null) {
      rocloop.ensureCompleted(logger);
    }
    // Collections.sort(results);

    // Transform Histogram into a Double Vector array.
    Collection<DoubleVector> res = new ArrayList<DoubleVector>(relation.size());
View Full Code Here

    storage = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, BitSet.class);

    StringBuffer msg = new StringBuffer();

    long start = System.currentTimeMillis();
    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Preprocessing preference vector", relation.size(), logger) : null;

    KNNQuery<V, DoubleDistance> knnQuery = QueryUtil.getKNNQuery(relation, EuclideanDistanceFunction.STATIC, k);

    Iterator<DBID> it = relation.iterDBIDs();
    while(it.hasNext()) {
      DBID id = it.next();

      if(logger.isDebugging()) {
        msg.append("\n\nid = ").append(id);
        ///msg.append(" ").append(database.getObjectLabelQuery().get(id));
        msg.append("\n knns: ");
      }

      List<DistanceResultPair<DoubleDistance>> knns = knnQuery.getKNNForDBID(id, k);
      ModifiableDBIDs knnIDs = DBIDUtil.newArray(knns.size());
      for(DistanceResultPair<DoubleDistance> knn : knns) {
        knnIDs.add(knn.getDBID());
        //if(logger.isDebugging()) {
        //  msg.append(database.getObjectLabelQuery().get(knn.getID())).append(" ");
        //}
      }

      BitSet preferenceVector = determinePreferenceVector(relation, id, knnIDs, msg);
      storage.put(id, preferenceVector);

      if(progress != null) {
        progress.incrementProcessed(logger);
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }

    if(logger.isDebugging()) {
      logger.debugFine(msg.toString());
    }
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.