Package de.lmu.ifi.dbs.elki.logging.progress

Examples of de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress


   *        reachability distance
   * @return the LRDs of the objects
   */
  protected WritableDataStore<Double> computeLRDs(DBIDs ids, KNNQuery<O, D> knnReach) {
    WritableDataStore<Double> lrds = DataStoreUtil.makeStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, Double.class);
    FiniteProgress lrdsProgress = logger.isVerbose() ? new FiniteProgress("LRD", ids.size(), logger) : null;
    for(DBID id : ids) {
      double sum = 0;
      List<DistanceResultPair<D>> neighbors = knnReach.getKNNForDBID(id, k);
      int nsize = neighbors.size() - (objectIsInKNN ? 0 : 1);
      for(DistanceResultPair<D> neighbor : neighbors) {
        if(objectIsInKNN || !neighbor.getDBID().equals(id)) {
          List<DistanceResultPair<D>> neighborsNeighbors = knnReach.getKNNForDBID(neighbor.getDBID(), k);
          sum += Math.max(neighbor.getDistance().doubleValue(), neighborsNeighbors.get(neighborsNeighbors.size() - 1).getDistance().doubleValue());
        }
      }
      // Avoid division by 0
      Double lrd = (sum > 0) ? nsize / sum : 0.0;
      lrds.put(id, lrd);
      if(lrdsProgress != null) {
        lrdsProgress.incrementProcessed(logger);
      }
    }
    if(lrdsProgress != null) {
      lrdsProgress.ensureCompleted(logger);
    }
    return lrds;
  }
View Full Code Here


  protected Pair<WritableDataStore<Double>, DoubleMinMax> computeLOFs(DBIDs ids, DataStore<Double> lrds, KNNQuery<O, D> knnRefer) {
    WritableDataStore<Double> lofs = DataStoreUtil.makeStorage(ids, DataStoreFactory.HINT_STATIC, Double.class);
    // track the maximum value for normalization.
    DoubleMinMax lofminmax = new DoubleMinMax();

    FiniteProgress progressLOFs = logger.isVerbose() ? new FiniteProgress("LOF_SCORE for objects", ids.size(), logger) : null;
    for(DBID id : ids) {
      double lrdp = lrds.get(id);
      final Double lof;
      if(lrdp > 0) {
        List<DistanceResultPair<D>> neighbors = knnRefer.getKNNForDBID(id, k);
        int nsize = neighbors.size() - (objectIsInKNN ? 0 : 1);
        // skip the point itself
        // neighbors.remove(0);
        double sum = 0;
        for(DistanceResultPair<D> neighbor : neighbors) {
          if(objectIsInKNN || !neighbor.getDBID().equals(id)) {
            sum += lrds.get(neighbor.getDBID());
          }
        }
        lof = (sum / nsize) / lrdp;
      }
      else {
        lof = 1.0;
      }
      lofs.put(id, lof);
      // update minimum and maximum
      lofminmax.put(lof);

      if(progressLOFs != null) {
        progressLOFs.incrementProcessed(logger);
      }
    }
    if(progressLOFs != null) {
      progressLOFs.ensureCompleted(logger);
    }
    return new Pair<WritableDataStore<Double>, DoubleMinMax>(lofs, lofminmax);
  }
View Full Code Here

   */
  public Clustering<Model> run(Database database, Relation<O> relation) {
    RangeQuery<O, D> rangeQuery = QueryUtil.getRangeQuery(relation, getDistanceFunction());
    final int size = relation.size();

    FiniteProgress objprog = logger.isVerbose() ? new FiniteProgress("Processing objects", size, logger) : null;
    IndefiniteProgress clusprog = logger.isVerbose() ? new IndefiniteProgress("Number of clusters", logger) : null;
    resultList = new ArrayList<ModifiableDBIDs>();
    noise = DBIDUtil.newHashSet();
    processedIDs = DBIDUtil.newHashSet(size);
    if(size >= minpts) {
      for(DBID id : rangeQuery.getRelation().iterDBIDs()) {
        if(!processedIDs.contains(id)) {
          expandCluster(database, rangeQuery, id, objprog, clusprog);
        }
        if(objprog != null && clusprog != null) {
          objprog.setProcessed(processedIDs.size(), logger);
          clusprog.setProcessed(resultList.size(), logger);
        }
        if(processedIDs.size() == size) {
          break;
        }
      }
    }
    else {
      for(DBID id : rangeQuery.getRelation().iterDBIDs()) {
        noise.add(id);
        if(objprog != null && clusprog != null) {
          objprog.setProcessed(noise.size(), logger);
          clusprog.setProcessed(resultList.size(), logger);
        }
      }
    }
    // Finish progress logging
    if(objprog != null) {
      objprog.ensureCompleted(logger);
    }
    if(clusprog != null) {
      clusprog.setCompleted(logger);
    }

View Full Code Here

    if(logger.isVerbose()) {
      logger.verbose("knnJoin...");
    }
    DataStore<KNNList<D>> knns = knnJoin.run(database, relation);

    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("DeLiClu", relation.size(), logger) : null;
    final int size = relation.size();

    ClusterOrderResult<D> clusterOrder = new ClusterOrderResult<D>("DeLiClu Clustering", "deliclu-clustering");
    heap = new UpdatableHeap<SpatialObjectPair>();

    // add start object to cluster order and (root, root) to priority queue
    DBID startID = getStartObject(relation);
    clusterOrder.add(startID, null, distFunction.getDistanceFactory().infiniteDistance());
    int numHandled = 1;
    index.setHandled(startID, relation.get(startID));
    SpatialDirectoryEntry rootEntry = (SpatialDirectoryEntry) index.getRootEntry();
    SpatialObjectPair spatialObjectPair = new SpatialObjectPair(distFunction.getDistanceFactory().nullDistance(), rootEntry, rootEntry, true);
    heap.add(spatialObjectPair);

    while(numHandled < size) {
      if(heap.isEmpty()) {
        throw new AbortException("DeLiClu heap was empty when it shouldn't have been.");
      }
      SpatialObjectPair dataPair = heap.poll();

      // pair of nodes
      if(dataPair.isExpandable) {
        expandNodes(index, distFunction, dataPair, knns);
      }
      // pair of objects
      else {
        // set handled
        LeafEntry e1 = (LeafEntry) dataPair.entry1;
        LeafEntry e2 = (LeafEntry) dataPair.entry2;
        final DBID e1id = e1.getDBID();
        List<TreeIndexPathComponent<DeLiCluEntry>> path = index.setHandled(e1id, relation.get(e1id));
        if(path == null) {
          throw new RuntimeException("snh: parent(" + e1id + ") = null!!!");
        }
        // add to cluster order
        clusterOrder.add(e1id, e2.getDBID(), dataPair.distance);
        numHandled++;
        // reinsert expanded leafs
        reinsertExpanded(distFunction, index, path, knns);

        if(progress != null) {
          progress.setProcessed(numHandled, logger);
        }
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }
    return clusterOrder;
  }
View Full Code Here

      epsilon = getDistanceFunction().getDistanceFactory().infiniteDistance();
    }
    RangeQuery<O, D> rangeQuery = QueryUtil.getRangeQuery(relation, getDistanceFunction(), epsilon);

    int size = relation.size();
    final FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("OPTICS", size, logger) : null;

    processedIDs = DBIDUtil.newHashSet(size);
    ClusterOrderResult<D> clusterOrder = new ClusterOrderResult<D>("OPTICS Clusterorder", "optics-clusterorder");

    if(getDistanceFunction() instanceof PrimitiveDoubleDistanceFunction && DoubleDistance.class.isInstance(epsilon)) {
      // Optimized codepath for double-based distances. Avoids Java
      // boxing/unboxing.
      for(DBID id : relation.iterDBIDs()) {
        if(!processedIDs.contains(id)) {
          // We need to do some ugly casts to be able to run the optimized version, unfortunately.
          @SuppressWarnings("unchecked")
          final ClusterOrderResult<DoubleDistance> doubleClusterOrder = ClusterOrderResult.class.cast(clusterOrder);
          @SuppressWarnings("unchecked")
          final RangeQuery<O, DoubleDistance> doubleRangeQuery = RangeQuery.class.cast(rangeQuery);
          final DoubleDistance depsilon = DoubleDistance.class.cast(epsilon);
          expandClusterOrderDouble(doubleClusterOrder, database, doubleRangeQuery, id, depsilon, progress);
        }
      }
    }
    else {
      for(DBID id : relation.iterDBIDs()) {
        if(!processedIDs.contains(id)) {
          expandClusterOrder(clusterOrder, database, rangeQuery, id, epsilon, progress);
        }
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }

    return clusterOrder;
  }
View Full Code Here

    }

    storage = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, PCAFilteredResult.class);

    long start = System.currentTimeMillis();
    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("Performing local PCA", relation.size(), getLogger()) : null;

    // TODO: use a bulk operation?
    for(DBID id : relation.iterDBIDs()) {
      List<DistanceResultPair<DoubleDistance>> objects = objectsForPCA(id);

      PCAFilteredResult pcares = pca.processQueryResult(objects, relation);

      storage.put(id, pcares);

      if(progress != null) {
        progress.incrementProcessed(getLogger());
      }
    }
    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }

    long end = System.currentTimeMillis();
    if(getLogger().isVerbose()) {
      long elapsedTime = end - start;
View Full Code Here

  @Override
  protected void preprocess() {
    storage = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT, List.class);
    materialized_RkNN = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT, Set.class);
    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("Materializing k nearest neighbors and reverse k nearest neighbors (k=" + k + ")", relation.size(), getLogger()) : null;
    materializeKNNAndRKNNs(DBIDUtil.ensureArray(relation.getDBIDs()), progress);
  }
View Full Code Here

    if(getLogger().isVerbose()) {
      getLogger().verbose("Approximating nearest neighbor lists to database objects");
    }

    List<E> leaves = index.getLeaves();
    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("Processing leaf nodes.", leaves.size(), getLogger()) : null;
    for(E leaf : leaves) {
      N node = index.getNode(leaf);
      int size = node.getNumEntries();
      pagesize.put(size);
      if(getLogger().isDebuggingFinest()) {
        getLogger().debugFinest("NumEntires = " + size);
      }
      // Collect the ids in this node.
      DBID[] ids = new DBID[size];
      for(int i = 0; i < size; i++) {
        ids[i] = ((LeafEntry) node.getEntry(i)).getDBID();
      }
      HashMap<DBIDPair, D> cache = new HashMap<DBIDPair, D>(size * size * 3 / 8);
      for(DBID id : ids) {
        KNNHeap<D> kNN = new KNNHeap<D>(k, distanceQuery.infiniteDistance());
        for(DBID id2 : ids) {
          DBIDPair key = DBIDUtil.newPair(id, id2);
          D d = cache.remove(key);
          if(d != null) {
            // consume the previous result.
            kNN.add(d, id2);
          }
          else {
            // compute new and store the previous result.
            d = distanceQuery.distance(id, id2);
            kNN.add(d, id2);
            // put it into the cache, but with the keys reversed
            key = DBIDUtil.newPair(id2, id);
            cache.put(key, d);
          }
        }
        ksize.put(kNN.size());
        storage.put(id, kNN.toSortedArrayList());
      }
      if(getLogger().isDebugging()) {
        if(cache.size() > 0) {
          getLogger().warning("Cache should be empty after each run, but still has " + cache.size() + " elements.");
        }
      }
      if(progress != null) {
        progress.incrementProcessed(getLogger());
      }
    }
    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }
    if(getLogger().isVerbose()) {
      getLogger().verbose("Average page size = " + pagesize.getMean() + " +- " + pagesize.getSampleStddev());
      getLogger().verbose("On average, " + ksize.getMean() + " +- " + ksize.getSampleStddev() + " neighbors returned.");
    }
View Full Code Here

    }

    ArrayDBIDs aids = DBIDUtil.ensureArray(relation.getDBIDs());
    int minsize = (int) Math.floor(aids.size() / partitions);

    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Processing partitions.", partitions, logger) : null;
    for(int part = 0; part < partitions; part++) {
      int size = (partitions * minsize + part >= aids.size()) ? minsize : minsize + 1;
      // Collect the ids in this node.
      ArrayModifiableDBIDs ids = DBIDUtil.newArray(size);
      for(int i = 0; i < size; i++) {
        assert (size * partitions + part < aids.size());
        ids.add(aids.get(i * partitions + part));
      }
      HashMap<DBIDPair, D> cache = new HashMap<DBIDPair, D>(size * size * 3 / 8);
      for(DBID id : ids) {
        KNNHeap<D> kNN = new KNNHeap<D>(k, distanceQuery.infiniteDistance());
        for(DBID id2 : ids) {
          DBIDPair key = DBIDUtil.newPair(id, id2);
          D d = cache.remove(key);
          if(d != null) {
            // consume the previous result.
            kNN.add(d, id2);
          }
          else {
            // compute new and store the previous result.
            d = distanceQuery.distance(id, id2);
            kNN.add(d, id2);
            // put it into the cache, but with the keys reversed
            key = DBIDUtil.newPair(id2, id);
            cache.put(key, d);
          }
        }
        ksize.put(kNN.size());
        storage.put(id, kNN.toSortedArrayList());
      }
      if(logger.isDebugging()) {
        if(cache.size() > 0) {
          logger.warning("Cache should be empty after each run, but still has " + cache.size() + " elements.");
        }
      }
      if(progress != null) {
        progress.incrementProcessed(logger);
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }
    if(logger.isVerbose()) {
      logger.verbose("On average, " + ksize.getMean() + " +- " + ksize.getSampleStddev() + " neighbors returned.");
    }
  }
View Full Code Here

  @Override
  protected void preprocess() {
    storage = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_STATIC, List.class);

    ArrayDBIDs ids = DBIDUtil.ensureArray(relation.getDBIDs());
    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("Materializing k nearest neighbors (k=" + k + ")", ids.size(), getLogger()) : null;

    // Try bulk
    List<List<DistanceResultPair<D>>> kNNList = null;
    if(usebulk) {
      kNNList = knnQuery.getKNNForBulkDBIDs(ids, k);
      if(kNNList != null) {
        for(int i = 0; i < ids.size(); i++) {
          DBID id = ids.get(i);
          storage.put(id, kNNList.get(i));
          if(progress != null) {
            progress.incrementProcessed(getLogger());
          }
        }
      }
    }
    else {
      for(DBID id : ids) {
        List<DistanceResultPair<D>> knn = knnQuery.getKNNForDBID(id, k);
        storage.put(id, knn);
        if(progress != null) {
          progress.incrementProcessed(getLogger());
        }
      }
    }

    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }
  }
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.