Package de.lmu.ifi.dbs.elki.logging.progress

Examples of de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress


    final int size = order.size();

    // When the logging is in the outer loop, it's just 2*size (providing enough
    // resolution)
    final int ltotal = 2 * size; // size * (size + 1);
    FiniteProgress prog = logger.isVerbose() ? new FiniteProgress("Similarity Matrix Image", ltotal, logger) : null;

    // Note: we assume that we have an efficient distance cache available,
    // since we are using 2*O(n*n) distance computations.
    DoubleMinMax minmax = new DoubleMinMax();
    for(int x = 0; x < size; x++) {
      DBID id1 = order.get(x);
      for(int y = x; y < size; y++) {
        DBID id2 = order.get(y);
        final double dist = dq.distance(id1, id2).doubleValue();
        if(!Double.isNaN(dist) && !Double.isInfinite(dist) /* && dist > 0.0 */) {
          if(!skipzero || dist != 0.0) {
            minmax.put(dist);
          }
        }
      }
      if(prog != null) {
        prog.incrementProcessed(logger);
      }
    }

    double zoom = minmax.getMax() - minmax.getMin();
    if(zoom > 0.0) {
      zoom = 1. / zoom;
    }
    LinearScaling scale = new LinearScaling(zoom, -minmax.getMin() * zoom);
    BufferedImage img = new BufferedImage(size, size, BufferedImage.TYPE_INT_RGB);
    for(int x = 0; x < size; x++) {
      DBID id1 = order.get(x);
      for(int y = x; y < size; y++) {
        DBID id2 = order.get(y);
        double ddist = dq.distance(id1, id2).doubleValue();
        if(ddist > 0.0) {
          ddist = scale.getScaled(ddist);
        }
        // Apply extra scaling
        if(scaling != null) {
          ddist = scaling.getScaled(ddist);
        }
        int dist = 0xFF & (int) (255 * ddist);
        int col = 0xff000000 | (dist << 16) | (dist << 8) | dist;
        img.setRGB(x, y, col);
        img.setRGB(y, x, col);
      }
      if(prog != null) {
        prog.incrementProcessed(logger);
      }
    }
    if(prog != null) {
      prog.ensureCompleted(logger);
    }

    return new SimilarityMatrix(img, relation, order);
  }
View Full Code Here


    }

    storage = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, PCAFilteredResult.class);

    long start = System.currentTimeMillis();
    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress("Performing local PCA", relation.size(), getLogger()) : null;

    // TODO: use a bulk operation?
    for(DBID id : relation.iterDBIDs()) {
      Collection<DistanceResultPair<DoubleDistance>> objects = objectsForPCA(id);

      PCAFilteredResult pcares = pca.processQueryResult(objects, relation);

      storage.put(id, pcares);

      if(progress != null) {
        progress.incrementProcessed(getLogger());
      }
    }
    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }

    long end = System.currentTimeMillis();
    if(getLogger().isVerbose()) {
      long elapsedTime = end - start;
View Full Code Here

      logger.debugFine(msg.toString());
    }

    try {
      long start = System.currentTimeMillis();
      FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Preprocessing preference vector", relation.size(), logger) : null;

      // only one epsilon value specified
      int dim = DatabaseUtil.dimensionality(relation);
      if(epsilon.length == 1 && dim != 1) {
        DoubleDistance eps = epsilon[0];
        epsilon = new DoubleDistance[dim];
        Arrays.fill(epsilon, eps);
      }

      // epsilons as string
      RangeQuery<V, DoubleDistance>[] rangeQueries = initRangeQueries(relation, dim);

      for(Iterator<DBID> it = relation.iterDBIDs(); it.hasNext();) {
        StringBuffer msg = new StringBuffer();
        final DBID id = it.next();

        if(logger.isDebugging()) {
          msg.append("\nid = ").append(id);
          // msg.append(" ").append(database.get(id));
          //msg.append(" ").append(database.getObjectLabelQuery().get(id));
        }

        // determine neighbors in each dimension
        ModifiableDBIDs[] allNeighbors = ClassGenericsUtil.newArrayOfNull(dim, ModifiableDBIDs.class);
        for(int d = 0; d < dim; d++) {
          List<DistanceResultPair<DoubleDistance>> qrList = rangeQueries[d].getRangeForDBID(id, epsilon[d]);
          allNeighbors[d] = DBIDUtil.newHashSet(qrList.size());
          for(DistanceResultPair<DoubleDistance> qr : qrList) {
            allNeighbors[d].add(qr.getDBID());
          }
        }

        if(logger.isDebugging()) {
          for(int d = 0; d < dim; d++) {
            msg.append("\n neighbors [").append(d).append("]");
            msg.append(" (").append(allNeighbors[d].size()).append(") = ");
            msg.append(allNeighbors[d]);
          }
        }

        BitSet preferenceVector = determinePreferenceVector(relation, allNeighbors, msg);
        storage.put(id, preferenceVector);

        if(logger.isDebugging()) {
          logger.debugFine(msg.toString());
        }

        if(progress != null) {
          progress.incrementProcessed(logger);
        }
      }
      if(progress != null) {
        progress.ensureCompleted(logger);
      }

      long end = System.currentTimeMillis();
      // TODO: re-add timing code!
      if(logger.isVerbose()) {
View Full Code Here

    WritableDataStore<Double> pdists = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, Double.class);
    {// computing PRDs
      if(stepprog != null) {
        stepprog.beginStep(3, "Computing pdists", logger);
      }
      FiniteProgress prdsProgress = logger.isVerbose() ? new FiniteProgress("pdists", relation.size(), logger) : null;
      for(DBID id : relation.iterDBIDs()) {
        List<DistanceResultPair<D>> neighbors = knnReach.getKNNForDBID(id, kreach);
        double sqsum = 0.0;
        // use first kref neighbors as reference set
        int ks = 0;
        for(DistanceResultPair<D> neighbor : neighbors) {
          if(objectIsInKNN || neighbor.getDBID() != id) {
            double d = neighbor.getDistance().doubleValue();
            sqsum += d * d;
            ks++;
            if(ks >= kreach) {
              break;
            }
          }
        }
        Double pdist = lambda * Math.sqrt(sqsum / ks);
        pdists.put(id, pdist);
        if(prdsProgress != null) {
          prdsProgress.incrementProcessed(logger);
        }
      }
    }
    // Compute PLOF values.
    WritableDataStore<Double> plofs = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, Double.class);
    MeanVariance mvplof = new MeanVariance();
    {// compute LOOP_SCORE of each db object
      if(stepprog != null) {
        stepprog.beginStep(4, "Computing PLOF", logger);
      }

      FiniteProgress progressPLOFs = logger.isVerbose() ? new FiniteProgress("PLOFs for objects", relation.size(), logger) : null;
      for(DBID id : relation.iterDBIDs()) {
        List<DistanceResultPair<D>> neighbors = knnComp.getKNNForDBID(id, kcomp);
        MeanVariance mv = new MeanVariance();
        // use first kref neighbors as comparison set.
        int ks = 0;
        for(DistanceResultPair<D> neighbor1 : neighbors) {
          if(objectIsInKNN || neighbor1.getDBID() != id) {
            mv.put(pdists.get(neighbor1.getDBID()));
            ks++;
            if(ks >= kcomp) {
              break;
            }
          }
        }
        double plof = Math.max(pdists.get(id) / mv.getMean(), 1.0);
        if(Double.isNaN(plof) || Double.isInfinite(plof)) {
          plof = 1.0;
        }
        plofs.put(id, plof);
        mvplof.put((plof - 1.0) * (plof - 1.0));

        if(progressPLOFs != null) {
          progressPLOFs.incrementProcessed(logger);
        }
      }
    }

    double nplof = lambda * Math.sqrt(mvplof.getMean());
    if(logger.isDebugging()) {
      logger.verbose("nplof normalization factor is " + nplof + " " + mvplof.getMean() + " " + mvplof.getSampleStddev());
    }

    // Compute final LoOP values.
    WritableDataStore<Double> loops = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_STATIC, Double.class);
    {// compute LOOP_SCORE of each db object
      if(stepprog != null) {
        stepprog.beginStep(5, "Computing LoOP scores", logger);
      }

      FiniteProgress progressLOOPs = logger.isVerbose() ? new FiniteProgress("LoOP for objects", relation.size(), logger) : null;
      for(DBID id : relation.iterDBIDs()) {
        loops.put(id, MathUtil.erf((plofs.get(id) - 1) / (nplof * sqrt2)));

        if(progressLOOPs != null) {
          progressLOOPs.incrementProcessed(logger);
        }
      }
    }

    if(stepprog != null) {
View Full Code Here

    WritableDataStore<Double> scores = DataStoreUtil.makeStorage(distFunc.getRelation().getDBIDs(), DataStoreFactory.HINT_STATIC, Double.class);
    if(logger.isVerbose()) {
      logger.verbose("computing outlier flag");
    }

    FiniteProgress progressOFlags = logger.isVerbose() ? new FiniteProgress("DBOutlier for objects", distFunc.getRelation().size(), logger) : null;
    int counter = 0;
    // if index exists, kNN query. if the distance to the mth nearest neighbor
    // is more than d -> object is outlier
    KNNQuery<O, D> knnQuery = database.getKNNQuery(distFunc, m, DatabaseQuery.HINT_OPTIMIZED_ONLY);
    if(knnQuery != null) {
      for(DBID id : distFunc.getRelation().iterDBIDs()) {
        counter++;
        final List<DistanceResultPair<D>> knns = knnQuery.getKNNForDBID(id, m);
        if(logger.isDebugging()) {
          logger.debugFine("distance to mth nearest neighbour" + knns.toString());
        }
        if(knns.get(Math.min(m, knns.size()) - 1).getDistance().compareTo(neighborhoodSize) <= 0) {
          // flag as outlier
          scores.put(id, 1.0);
        }
        else {
          // flag as no outlier
          scores.put(id, 0.0);
        }
      }
      if(progressOFlags != null) {
        progressOFlags.setProcessed(counter, logger);
      }
    }
    else {
      // range query for each object. stop if m objects are found
      for(DBID id : distFunc.getRelation().iterDBIDs()) {
        counter++;
        Iterator<DBID> iterator = distFunc.getRelation().iterDBIDs();
        int count = 0;
        while(iterator.hasNext() && count < m) {
          DBID currentID = iterator.next();
          D currentDistance = distFunc.distance(id, currentID);

          if(currentDistance.compareTo(neighborhoodSize) <= 0) {
            count++;
          }
        }

        if(count < m) {
          // flag as outlier
          scores.put(id, 1.0);
        }
        else {
          // flag as no outlier
          scores.put(id, 0.0);
        }
      }

      if(progressOFlags != null) {
        progressOFlags.setProcessed(counter, logger);
      }
    }
    if(progressOFlags != null) {
      progressOFlags.ensureCompleted(logger);
    }
    return scores;
  }
View Full Code Here

    storage = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP, ProjectionResult.class);

    long start = System.currentTimeMillis();
    RangeQuery<NV, D> rangeQuery = QueryUtil.getRangeQuery(relation, rangeQueryDistanceFunction);

    FiniteProgress progress = getLogger().isVerbose() ? new FiniteProgress(this.getClass().getName(), relation.size(), getLogger()) : null;
    for(DBID id : relation.iterDBIDs()) {
      List<DistanceResultPair<D>> neighbors = rangeQuery.getRangeForDBID(id, epsilon);

      final P pres;
      if(neighbors.size() >= minpts) {
        pres = computeProjection(id, neighbors, relation);
      }
      else {
        DistanceResultPair<D> firstQR = neighbors.get(0);
        neighbors = new ArrayList<DistanceResultPair<D>>();
        neighbors.add(firstQR);
        pres = computeProjection(id, neighbors, relation);
      }
      storage.put(id, pres);

      if(progress != null) {
        progress.incrementProcessed(getLogger());
      }
    }
    if(progress != null) {
      progress.ensureCompleted(getLogger());
    }

    long end = System.currentTimeMillis();
    // TODO: re-add timing code!
    if(true) {
View Full Code Here

  public OutlierResult run(Database database) throws IllegalStateException {
    Relation<O> relation = database.getRelation(getInputTypeRestriction()[0]);
    DistanceQuery<O, D> distFunc = database.getDistanceQuery(relation, getDistanceFunction());
    RangeQuery<O, D> rangeQuery = database.getRangeQuery(distFunc);

    FiniteProgress progressPreproc = logger.isVerbose() ? new FiniteProgress("LOCI preprocessing", relation.size(), logger) : null;
    // LOCI preprocessing step
    WritableDataStore<ArrayList<DoubleIntPair>> interestingDistances = DataStoreUtil.makeStorage(relation.getDBIDs(), DataStoreFactory.HINT_TEMP | DataStoreFactory.HINT_SORTED, ArrayList.class);
    for(DBID id : relation.iterDBIDs()) {
      List<DistanceResultPair<D>> neighbors = rangeQuery.getRangeForDBID(id, rmax);
      // build list of critical distances
      ArrayList<DoubleIntPair> cdist = new ArrayList<DoubleIntPair>(neighbors.size() * 2);
      {
        for(int i = 0; i < neighbors.size(); i++) {
          DistanceResultPair<D> r = neighbors.get(i);
          if(i + 1 < neighbors.size() && r.getDistance().compareTo(neighbors.get(i + 1).getDistance()) == 0) {
            continue;
          }
          cdist.add(new DoubleIntPair(r.getDistance().doubleValue(), i));
          final double ri = r.getDistance().doubleValue() / alpha;
          if(ri <= rmax.doubleValue()) {
            cdist.add(new DoubleIntPair(ri, Integer.MIN_VALUE));
          }
        }
      }
      Collections.sort(cdist);
      // fill the gaps to have fast lookups of number of neighbors at a given
      // distance.
      int lastk = 0;
      for(DoubleIntPair c : cdist) {
        if(c.second == Integer.MIN_VALUE) {
          c.second = lastk;
        }
        else {
          lastk = c.second;
        }
      }

      interestingDistances.put(id, cdist);
      if(progressPreproc != null) {
        progressPreproc.incrementProcessed(logger);
      }
    }
    if(progressPreproc != null) {
      progressPreproc.ensureCompleted(logger);
    }
    // LOCI main step
    FiniteProgress progressLOCI = logger.isVerbose() ? new FiniteProgress("LOCI scores", relation.size(), logger) : null;
    WritableRecordStore store = DataStoreUtil.makeRecordStorage(relation.getDBIDs(), DataStoreFactory.HINT_STATIC, Double.class, Double.class);
    WritableDataStore<Double> mdef_norm = store.getStorage(0, Double.class);
    WritableDataStore<Double> mdef_radius = store.getStorage(1, Double.class);
    for(DBID id : relation.iterDBIDs()) {
      double maxmdefnorm = 0.0;
      double maxnormr = 0;
      List<DoubleIntPair> cdist = interestingDistances.get(id);
      double maxdist = cdist.get(cdist.size() - 1).first;
      int maxneig = cdist.get(cdist.size() - 1).second;
      if(maxneig >= nmin) {
        D range = distFunc.getDistanceFactory().fromDouble(maxdist);
        // Compute the largest neighborhood we will need.
        List<DistanceResultPair<D>> maxneighbors = rangeQuery.getRangeForDBID(id, range);
        for(DoubleIntPair c : cdist) {
          double alpha_r = alpha * c.first;
          // compute n(p_i, \alpha * r) from list
          int n_alphar = 0;
          for(DoubleIntPair c2 : cdist) {
            if(c2.first <= alpha_r) {
              n_alphar = c2.second;
            }
            else {
              break;
            }
          }
          // compute \hat{n}(p_i, r, \alpha)
          double nhat_r_alpha = 0.0;
          double sigma_nhat_r_alpha = 0.0;
          // Build the sublist from maxneighbors to match the radius c.first
          List<DistanceResultPair<D>> rneighbors = null;
          for(int i = nmin; i < maxneighbors.size(); i++) {
            DistanceResultPair<D> ne = maxneighbors.get(i);
            if(ne.getDistance().doubleValue() > c.first) {
              rneighbors = maxneighbors.subList(1, i);
              break;
            }
          }
          if(rneighbors == null) {
            continue;
          }
          for(DistanceResultPair<D> rn : rneighbors) {
            List<DoubleIntPair> rncdist = interestingDistances.get(rn.getDBID());
            int rn_alphar = 0;
            for(DoubleIntPair c2 : rncdist) {
              if(c2.first <= alpha_r) {
                rn_alphar = c2.second;
              }
              else {
                break;
              }
            }
            nhat_r_alpha = nhat_r_alpha + rn_alphar;
            sigma_nhat_r_alpha = sigma_nhat_r_alpha + (rn_alphar * rn_alphar);
          }
          // finalize average and deviation
          nhat_r_alpha = nhat_r_alpha / rneighbors.size();
          sigma_nhat_r_alpha = Math.sqrt(sigma_nhat_r_alpha / rneighbors.size() - nhat_r_alpha * nhat_r_alpha);
          double mdef = 1.0 - (n_alphar / nhat_r_alpha);
          double sigmamdef = sigma_nhat_r_alpha / nhat_r_alpha;
          double mdefnorm = mdef / sigmamdef;

          if(mdefnorm > maxmdefnorm) {
            maxmdefnorm = mdefnorm;
            maxnormr = c.first;
          }
        }
      }
      else {
        // FIXME: when nmin was never fulfilled - what is the proper value then?
        maxmdefnorm = 1.0;
        maxnormr = maxdist;
      }
      mdef_norm.put(id, maxmdefnorm);
      mdef_radius.put(id, maxnormr);
      if(progressLOCI != null) {
        progressLOCI.incrementProcessed(logger);
      }
    }
    if(progressLOCI != null) {
      progressLOCI.ensureCompleted(logger);
    }
    Relation<Double> scoreResult = new MaterializedRelation<Double>("LOCI normalized MDEF", "loci-mdef-outlier", TypeUtil.DOUBLE, mdef_norm, relation.getDBIDs());
    // TODO: actually provide min and max?
    OutlierScoreMeta scoreMeta = new QuotientOutlierScoreMeta(Double.NaN, Double.NaN, 0.0, Double.POSITIVE_INFINITY, 0.0);
    OutlierResult result = new OutlierResult(scoreMeta, scoreResult);
View Full Code Here

    AggregatingHistogram<Double, Double> hist = AggregatingHistogram.DoubleSumHistogram(numbins, 0.0, 1.0);

    if(logger.isVerbose()) {
      logger.verbose("Processing points...");
    }
    FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Computing ROC AUC values", relation.size(), logger) : null;

    MeanVariance mv = new MeanVariance();
    // sort neighbors
    for(Cluster<?> clus : split) {
      for(DBID i1 : clus.getIDs()) {
        KNNResult<D> knn = knnQuery.getKNNForDBID(i1, relation.size());
        double result = ROC.computeROCAUCDistanceResult(relation.size(), clus, knn);

        mv.put(result);
        hist.aggregate(result, 1. / relation.size());

        if(progress != null) {
          progress.incrementProcessed(logger);
        }
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }

    // Transform Histogram into a Double Vector array.
    Collection<DoubleVector> res = new ArrayList<DoubleVector>(relation.size());
    for(DoubleObjPair<Double> pair : hist) {
View Full Code Here

    }

    if(stepprog != null) {
      stepprog.beginStep(2, "Build histogram.", logger);
    }
    final FiniteProgress progress = logger.isVerbose() ? new FiniteProgress("Distance computations", relation.size(), logger) : null;
    // iterate per cluster
    final Pair<Long, Long> incFirst = new Pair<Long, Long>(1L, 0L);
    final Pair<Long, Long> incSecond = new Pair<Long, Long>(0L, 1L);
    for(Cluster<?> c1 : split) {
      for(DBID id1 : c1.getIDs()) {
        // in-cluster distances
        DoubleMinMax iminmax = new DoubleMinMax();
        for(DBID id2 : c1.getIDs()) {
          // skip the point itself.
          if(id1 == id2) {
            continue;
          }
          double d = distFunc.distance(id1, id2).doubleValue();

          histogram.aggregate(d, incFirst);

          iminmax.put(d);
        }
        // aggregate
        mimin.put(iminmax.getMin());
        mimax.put(iminmax.getMax());
        midif.put(iminmax.getDiff());
        // min/max
        giminmax.put(iminmax.getMin());
        giminmax.put(iminmax.getMax());

        // other-cluster distances
        DoubleMinMax ominmax = new DoubleMinMax();
        for(Cluster<?> c2 : split) {
          if(c2 == c1) {
            continue;
          }
          for(DBID id2 : c2.getIDs()) {
            // skip the point itself (shouldn't happen though)
            if(id1 == id2) {
              continue;
            }
            double d = distFunc.distance(id1, id2).doubleValue();

            histogram.aggregate(d, incSecond);

            ominmax.put(d);
          }
        }
        // aggregate
        momin.put(ominmax.getMin());
        momax.put(ominmax.getMax());
        modif.put(ominmax.getDiff());
        // min/max
        gominmax.put(ominmax.getMin());
        gominmax.put(ominmax.getMax());
        if(progress != null) {
          progress.incrementProcessed(logger);
        }
      }
    }
    if(progress != null) {
      progress.ensureCompleted(logger);
    }
    // Update values (only needed for sampling case).
    gminmax.setFirst(Math.min(giminmax.getMin(), gominmax.getMin()));
    gminmax.setSecond(Math.max(giminmax.getMax(), gominmax.getMax()));
View Full Code Here

    AggregatingHistogram<MeanVariance, Double> hist = AggregatingHistogram.MeanVarianceHistogram(numbins, 0.0, 1.0);

    if(logger.isVerbose()) {
      logger.verbose("Processing points...");
    }
    FiniteProgress rocloop = logger.isVerbose() ? new FiniteProgress("Computing ROC AUC values", relation.size(), logger) : null;

    // sort neighbors
    for(Cluster<?> clus : split) {
      ArrayList<FCPair<Double, DBID>> cmem = new ArrayList<FCPair<Double, DBID>>(clus.size());
      Vector av = averages.get(clus).getColumnVector();
      Matrix covm = covmats.get(clus);

      for(DBID i1 : clus.getIDs()) {
        Double d = MathUtil.mahalanobisDistance(covm, av.minus(relation.get(i1).getColumnVector()));
        cmem.add(new FCPair<Double, DBID>(d, i1));
      }
      Collections.sort(cmem);

      for(int ind = 0; ind < cmem.size(); ind++) {
        DBID i1 = cmem.get(ind).getSecond();
        KNNResult<D> knn = knnQuery.getKNNForDBID(i1, relation.size());
        double result = ROC.computeROCAUCDistanceResult(relation.size(), clus, knn);

        hist.aggregate(((double) ind) / clus.size(), result);

        if(rocloop != null) {
          rocloop.incrementProcessed(logger);
        }
      }
    }
    if(rocloop != null) {
      rocloop.ensureCompleted(logger);
    }
    // Collections.sort(results);

    // Transform Histogram into a Double Vector array.
    Collection<DoubleVector> res = new ArrayList<DoubleVector>(relation.size());
View Full Code Here

TOP

Related Classes of de.lmu.ifi.dbs.elki.logging.progress.FiniteProgress

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.