Package org.apache.commons.math3.distribution

Examples of org.apache.commons.math3.distribution.ChiSquaredDistribution.cumulativeProbability()


        final double[] binBounds = getUpperBounds();
        final double kB = kB(binIndex);
        final double lower = binIndex == 0 ? min : binBounds[binIndex - 1];
        final RealDistribution kernel = k(x);
        final double withinBinCum =
            (kernel.cumulativeProbability(x) -  kernel.cumulativeProbability(lower)) / kB;
        return pBminus + pB * withinBinCum;
    }

    /**
     * {@inheritDoc}
 
View Full Code Here


        final double[] binBounds = getUpperBounds();
        final double kB = kB(binIndex);
        final double lower = binIndex == 0 ? min : binBounds[binIndex - 1];
        final RealDistribution kernel = k(x);
        final double withinBinCum =
            (kernel.cumulativeProbability(x) -  kernel.cumulativeProbability(lower)) / kB;
        return pBminus + pB * withinBinCum;
    }

    /**
     * {@inheritDoc}
 
View Full Code Here

        final RealDistribution kernel = getKernel(binStats.get(i));
        final double kB = kB(i);
        final double[] binBounds = getUpperBounds();
        final double lower = i == 0 ? min : binBounds[i - 1];
        final double kBminus = kernel.cumulativeProbability(lower);
        final double pB = pB(i);
        final double pBminus = pBminus(i);
        final double pCrit = p - pBminus;
        if (pCrit <= 0) {
            return lower;
View Full Code Here

     */
    @SuppressWarnings("deprecation")
    private double kB(int i) {
        final double[] binBounds = getUpperBounds();
        final RealDistribution kernel = getKernel(binStats.get(i));
        return i == 0 ? kernel.cumulativeProbability(min, binBounds[0]) :
            kernel.cumulativeProbability(binBounds[i - 1], binBounds[i]);
    }

    /**
     * The within-bin kernel of the bin that x belongs to.
View Full Code Here

    @SuppressWarnings("deprecation")
    private double kB(int i) {
        final double[] binBounds = getUpperBounds();
        final RealDistribution kernel = getKernel(binStats.get(i));
        return i == 0 ? kernel.cumulativeProbability(min, binBounds[0]) :
            kernel.cumulativeProbability(binBounds[i - 1], binBounds[i]);
    }

    /**
     * The within-bin kernel of the bin that x belongs to.
     *
 
View Full Code Here

            final double upper = binBounds[bin];
            // Compute bMinus = sum or mass of bins below the bin containing the point
            // First bin has mass 11 / 10000, the rest have mass 10 / 10000.
            final double bMinus = bin == 0 ? 0 : (bin - 1) * binMass + firstBinMass;
            final RealDistribution kernel = findKernel(lower, upper);
            final double withinBinKernelMass = kernel.cumulativeProbability(lower, upper);
            final double kernelCum = kernel.cumulativeProbability(lower, testPoints[i]);
            cumValues[i] = bMinus + (bin == 0 ? firstBinMass : binMass) * kernelCum/withinBinKernelMass;
        }
        return cumValues;
    }
View Full Code Here

            // Compute bMinus = sum or mass of bins below the bin containing the point
            // First bin has mass 11 / 10000, the rest have mass 10 / 10000.
            final double bMinus = bin == 0 ? 0 : (bin - 1) * binMass + firstBinMass;
            final RealDistribution kernel = findKernel(lower, upper);
            final double withinBinKernelMass = kernel.cumulativeProbability(lower, upper);
            final double kernelCum = kernel.cumulativeProbability(lower, testPoints[i]);
            cumValues[i] = bMinus + (bin == 0 ? firstBinMass : binMass) * kernelCum/withinBinKernelMass;
        }
        return cumValues;
    }

View Full Code Here

            final int bin = findBin(testPoints[i]);
            final double lower = bin == 0 ? empiricalDistribution.getSupportLowerBound() :
                binBounds[bin - 1];
            final double upper = binBounds[bin];
            final RealDistribution kernel = findKernel(lower, upper);
            final double withinBinKernelMass = kernel.cumulativeProbability(lower, upper);
            final double density = kernel.density(testPoints[i]);
            densityValues[i] = density * (bin == 0 ? firstBinMass : binMass) / withinBinKernelMass;  
        }
        return densityValues;
    }
View Full Code Here

        };
        final double[] lower = {0, 5, 1000, 5001, 9995};
        final double[] upper = {5, 12, 1030, 5010, 10000};
        for (int i = 1; i < 5; i++) {
            Assert.assertEquals(
                    distribution.cumulativeProbability(
                            lower[i], upper[i]),
                            integrator.integrate(
                                    1000000, // Triangle integrals are very slow to converge
                                    d, lower[i], upper[i]), tol);
        }
View Full Code Here

        final double[] binBounds = getUpperBounds();
        final double kB = kB(binIndex);
        final double lower = binIndex == 0 ? min : binBounds[binIndex - 1];
        final RealDistribution kernel = k(x);
        final double withinBinCum =
            (kernel.cumulativeProbability(x) -  kernel.cumulativeProbability(lower)) / kB;
        return pBminus + pB * withinBinCum;
    }

    /**
     * {@inheritDoc}
 
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.