Package org.apache.commons.math3.distribution

Examples of org.apache.commons.math3.distribution.ChiSquaredDistribution.cumulativeProbability()


        ConvergenceException, MaxCountExceededException {

        AnovaStats a = anovaStats(categoryData);
        // No try-catch or advertised exception because args are valid
        FDistribution fdist = new FDistribution(a.dfbg, a.dfwg);
        return 1.0 - fdist.cumulativeProbability(a.F);

    }

    /**
     * Computes the ANOVA P-value for a collection of {@link SummaryStatistics}.
View Full Code Here


        throws NullArgumentException, DimensionMismatchException,
               ConvergenceException, MaxCountExceededException {

        final AnovaStats a = anovaStats(categoryData, allowOneElementData);
        final FDistribution fdist = new FDistribution(a.dfbg, a.dfwg);
        return 1.0 - fdist.cumulativeProbability(a.F);

    }

    /**
     * This method calls the method that actually does the calculations (except
View Full Code Here

        // No try-catch or advertised exception because args are valid
        // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
        final NormalDistribution standardNormal = new NormalDistribution(null, 0, 1);

        return 2*standardNormal.cumulativeProbability(z);
    }

    /**
     * Returns the <i>observed significance level</i>, or <a href=
     * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
 
View Full Code Here

        // No try-catch or advertised exception because args are valid
        // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
        final NormalDistribution standardNormal = new NormalDistribution(null, 0, 1);

        return 2 * standardNormal.cumulativeProbability(z);
    }

    /**
     * Returns the asymptotic <i>observed significance level</i>, or <a href=
     * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
 
View Full Code Here

        final double z = (Umin - EU) / FastMath.sqrt(VarU);

        final NormalDistribution standardNormal = new NormalDistribution(0, 1);

        return 2 * standardNormal.cumulativeProbability(z);
    }

    /**
     * Returns the asymptotic <i>observed significance level</i>, or <a href=
     * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
 
View Full Code Here

        // - 0.5 is a continuity correction
        final double z = (Wmin - ES - 0.5) / FastMath.sqrt(VarS);

        final NormalDistribution standardNormal = new NormalDistribution(0, 1);

        return 2*standardNormal.cumulativeProbability(z);
    }

    /**
     * Returns the <i>observed significance level</i>, or <a href=
     * "http://www.cas.lancs.ac.uk/glossary_v1.1/hyptest.html#pvalue">
 
View Full Code Here

         *  Start with upper and lower tail bins.
         *  Lower bin = [0, lower); Upper bin = [upper, +inf).
         */
        PoissonDistribution poissonDistribution = new PoissonDistribution(mean);
        int lower = 1;
        while (poissonDistribution.cumulativeProbability(lower - 1) * sampleSize < minExpectedCount) {
            lower++;
        }
        int upper = (int) (5 * mean)// Even for mean = 1, not much mass beyond 5
        while ((1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize < minExpectedCount) {
            upper--;
View Full Code Here

        int lower = 1;
        while (poissonDistribution.cumulativeProbability(lower - 1) * sampleSize < minExpectedCount) {
            lower++;
        }
        int upper = (int) (5 * mean)// Even for mean = 1, not much mass beyond 5
        while ((1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize < minExpectedCount) {
            upper--;
        }

        // Set bin width for interior bins.  For poisson, only need to look at end bins.
        int binWidth = 0;
View Full Code Here

        boolean widthSufficient = false;
        double lowerBinMass = 0;
        double upperBinMass = 0;
        while (!widthSufficient) {
            binWidth++;
            lowerBinMass = poissonDistribution.cumulativeProbability(lower - 1, lower + binWidth - 1);
            upperBinMass = poissonDistribution.cumulativeProbability(upper - binWidth - 1, upper - 1);
            widthSufficient = FastMath.min(lowerBinMass, upperBinMass) * sampleSize >= minExpectedCount;
        }

        /*
 
View Full Code Here

        double lowerBinMass = 0;
        double upperBinMass = 0;
        while (!widthSufficient) {
            binWidth++;
            lowerBinMass = poissonDistribution.cumulativeProbability(lower - 1, lower + binWidth - 1);
            upperBinMass = poissonDistribution.cumulativeProbability(upper - binWidth - 1, upper - 1);
            widthSufficient = FastMath.min(lowerBinMass, upperBinMass) * sampleSize >= minExpectedCount;
        }

        /*
         *  Determine interior bin bounds.  Bins are
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.