Package org.apache.commons.math3.distribution

Examples of org.apache.commons.math3.distribution.ChiSquaredDistribution.cumulativeProbability()


        checkArray(counts);
        double df = ((double) counts.length -1) * ((double) counts[0].length - 1);
        // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
        final ChiSquaredDistribution distribution = new ChiSquaredDistribution(df);
        return 1 - distribution.cumulativeProbability(chiSquare(counts));

    }

    /**
     * Performs a <a href="http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm">
View Full Code Here


        MaxCountExceededException {

        // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
        final ChiSquaredDistribution distribution =
                new ChiSquaredDistribution(null, (double) observed1.length - 1);
        return 1 - distribution.cumulativeProbability(
                chiSquareDataSetsComparison(observed1, observed2));

    }

    /**
 
View Full Code Here

            DimensionMismatchException, MaxCountExceededException {

        // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
        final ChiSquaredDistribution distribution =
                new ChiSquaredDistribution(null, expected.length - 1.0);
        return 1.0 - distribution.cumulativeProbability(g(expected, observed));
    }

    /**
     * Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described
     * in p64-69 of McDonald, J.H. 2009. Handbook of Biological Statistics
View Full Code Here

            DimensionMismatchException, MaxCountExceededException {

        // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
        final ChiSquaredDistribution distribution =
                new ChiSquaredDistribution(null, expected.length - 2.0);
        return 1.0 - distribution.cumulativeProbability(g(expected, observed));
    }

    /**
     * Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit
     * evaluating the null hypothesis that the observed counts conform to the
View Full Code Here

            MaxCountExceededException {

        // pass a null rng to avoid unneeded overhead as we will not sample from this distribution
        final ChiSquaredDistribution distribution =
                new ChiSquaredDistribution(null, (double) observed1.length - 1);
        return 1 - distribution.cumulativeProbability(
                gDataSetsComparison(observed1, observed2));
    }

    /**
     * <p>Performs a G-Test (Log-Likelihood Ratio Test) comparing two binned
View Full Code Here

        throws NotPositiveException, NotStrictlyPositiveException,
        DimensionMismatchException, MaxCountExceededException {

        ChiSquaredDistribution distribution =
            new ChiSquaredDistribution(expected.length - 1.0);
        return 1.0 - distribution.cumulativeProbability(chiSquare(expected, observed));

    }

    /**
     * Performs a <a href="http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.htm">
View Full Code Here

        checkArray(counts);
        double df = ((double) counts.length -1) * ((double) counts[0].length - 1);
        ChiSquaredDistribution distribution;
        distribution = new ChiSquaredDistribution(df);
        return 1 - distribution.cumulativeProbability(chiSquare(counts));

    }

    /**
     * Performs a <a href="http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm">
View Full Code Here

        throws DimensionMismatchException, NotPositiveException, ZeroException,
        MaxCountExceededException {

        ChiSquaredDistribution distribution;
        distribution = new ChiSquaredDistribution((double) observed1.length - 1);
        return 1 - distribution.cumulativeProbability(
                chiSquareDataSetsComparison(observed1, observed2));

    }

    /**
 
View Full Code Here

            throws NotPositiveException, NotStrictlyPositiveException,
            DimensionMismatchException, MaxCountExceededException {

        final ChiSquaredDistribution distribution =
                new ChiSquaredDistribution(expected.length - 1.0);
        return 1.0 - distribution.cumulativeProbability(
                g(expected, observed));
    }

    /**
     * Returns the intrinsic (Hardy-Weinberg proportions) p-Value, as described
View Full Code Here

            throws NotPositiveException, NotStrictlyPositiveException,
            DimensionMismatchException, MaxCountExceededException {

        final ChiSquaredDistribution distribution =
                new ChiSquaredDistribution(expected.length - 2.0);
        return 1.0 - distribution.cumulativeProbability(
                g(expected, observed));
    }

    /**
     * Performs a G-Test (Log-Likelihood Ratio Test) for goodness of fit
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.