Package org.apache.commons.math3.analysis.polynomials

Examples of org.apache.commons.math3.analysis.polynomials.PolynomialFunction.multiply()


                for (int j = n-1; j >= 0; j--) {
                    d2v = dv.add(z.multiply(d2v));
                    dv = pv.add(z.multiply(dv));
                    pv = coefficients[j].add(z.multiply(pv));
                }
                d2v = d2v.multiply(new Complex(2.0, 0.0));

                // Check for convergence.
                final double tolerance = FastMath.max(relativeAccuracy * z.abs(),
                                                      absoluteAccuracy);
                if ((z.subtract(oldz)).abs() <= tolerance) {
View Full Code Here


        Dfp baseDfp = field.newDfp(base);
        Dfp dfpPower = field.getOne();
        for (int i = 0; i < maxExp; i++) {
            Assert.assertEquals("exp=" + i, dfpPower.toDouble(), FastMath.pow(base, i),
                                0.6 * FastMath.ulp(dfpPower.toDouble()));
            dfpPower = dfpPower.multiply(baseDfp);
        }
    }

    @Test
    public void testIncrementExactInt() {
View Full Code Here

        Dfp baseDfp = field.newDfp(base);
        Dfp dfpPower = field.getOne();
        for (int i = 0; i < maxExp; i++) {
            Assert.assertEquals("exp=" + i, dfpPower.toDouble(), FastMath.pow(base, i),
                                0.6 * FastMath.ulp(dfpPower.toDouble()));
            dfpPower = dfpPower.multiply(baseDfp);
        }
    }

}
View Full Code Here

        Dfp baseDfp = field.newDfp(base);
        Dfp dfpPower = field.getOne();
        for (int i = 0; i < maxExp; i++) {
            Assert.assertEquals("exp=" + i, dfpPower.toDouble(), FastMath.pow(base, i),
                                0.6 * FastMath.ulp(dfpPower.toDouble()));
            dfpPower = dfpPower.multiply(baseDfp);
        }
    }

}
View Full Code Here

            BigFraction ck     = coefficients.get(startK);
            BigFraction ckm1   = coefficients.get(startKm1);

            // degree 0 coefficient
            coefficients.add(ck.multiply(ai[0]).subtract(ckm1.multiply(ai[2])));

            // degree 1 to degree k-1 coefficients
            for (int i = 1; i < k; ++i) {
                final BigFraction ckPrev = ck;
                ck     = coefficients.get(startK + i);
View Full Code Here

            // degree 1 to degree k-1 coefficients
            for (int i = 1; i < k; ++i) {
                final BigFraction ckPrev = ck;
                ck     = coefficients.get(startK + i);
                ckm1   = coefficients.get(startKm1 + i);
                coefficients.add(ck.multiply(ai[0]).add(ckPrev.multiply(ai[1])).subtract(ckm1.multiply(ai[2])));
            }

            // degree k coefficient
            final BigFraction ckPrev = ck;
            ck = coefficients.get(startK + k);
View Full Code Here

            }

            // degree k coefficient
            final BigFraction ckPrev = ck;
            ck = coefficients.get(startK + k);
            coefficients.add(ck.multiply(ai[0]).add(ckPrev.multiply(ai[1])));

            // degree k+1 coefficient
            coefficients.add(ck.multiply(ai[1]));

        }
View Full Code Here

        final FieldMatrix<BigFraction> Hpower = H.power(n);

        BigFraction pFrac = Hpower.getEntry(k - 1, k - 1);

        for (int i = 1; i <= n; ++i) {
            pFrac = pFrac.multiply(i).divide(n);
        }

        /*
         * BigFraction.doubleValue converts numerator to double and the
         * denominator to double and divides afterwards. That gives NaN quite
View Full Code Here

         * hPowers[0] = h^1 ... hPowers[m-1] = h^m
         */
        final BigFraction[] hPowers = new BigFraction[m];
        hPowers[0] = h;
        for (int i = 1; i < m; ++i) {
            hPowers[i] = h.multiply(hPowers[i - 1]);
        }

        /*
         * First column and last row has special values (each other reversed).
         */
 
View Full Code Here

         * [1] states: "For 1/2 < h < 1 the bottom left element of the matrix
         * should be (1 - 2*h^m + (2h - 1)^m )/m!" Since 0 <= h < 1, then if h >
         * 1/2 is sufficient to check:
         */
        if (h.compareTo(BigFraction.ONE_HALF) == 1) {
            Hdata[m - 1][0] = Hdata[m - 1][0].add(h.multiply(2).subtract(1).pow(m));
        }

        /*
         * Aside from the first column and last row, the (i, j)-th element is
         * 1/(i - j + 1)! if i - j + 1 >= 0, else 0. 1's and 0's are already
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.