Package org.apache.commons.math3.analysis.polynomials

Examples of org.apache.commons.math3.analysis.polynomials.PolynomialFunction.multiply()


            dx = variables[0].getField().getOne();
            for (int j = 0; j < n; ++j) {
                s2 = s2.add(dx.multiply(variables[j]));
                dx = dx.multiply(div);
            }
            f[i] = s1.subtract(s2.multiply(s2)).subtract(1);
        }

        DerivativeStructure x1 = variables[0];
        DerivativeStructure x2 = variables[1];
        f[m - 2] = x1;
View Full Code Here


        DerivativeStructure x3 = variables[2];
        DerivativeStructure[] f = new DerivativeStructure[m];
      for (int i = 0; i < m; ++i) {
        double tmp = (i + 1) / 10.0;
        f[i] = x1.multiply(-tmp).exp().subtract(x2.multiply(-tmp).exp()).add(
                  x3.multiply(FastMath.exp(-i - 1) - FastMath.exp(-tmp)));
      }
      return f;
    }

  }
View Full Code Here

        DerivativeStructure x1 = variables[0];
        DerivativeStructure x2 = variables[1];
        DerivativeStructure[] f = new DerivativeStructure[m];
        for (int i = 0; i < m; ++i) {
            double temp = i + 1;
            f[i] = x1.multiply(temp).exp().add(x2.multiply(temp).exp()).subtract(2 + 2 * temp).negate();
        }
        return f;
    }

  }
View Full Code Here

        // build the polynomials by iterating on the top diagonal of the divided differences array
        for (int i = 0; i < topDiagonal.size(); ++i) {
            double[] tdi = topDiagonal.get(i);
            for (int k = 0; k < polynomials.length; ++k) {
                polynomials[k] = polynomials[k].add(coeff.multiply(polynomial(tdi[k])));
            }
            coeff = coeff.multiply(polynomial(-abscissae.get(i), 1.0));
        }

        return polynomials;
View Full Code Here

        for (int i = 0; i < topDiagonal.size(); ++i) {
            double[] tdi = topDiagonal.get(i);
            for (int k = 0; k < polynomials.length; ++k) {
                polynomials[k] = polynomials[k].add(coeff.multiply(polynomial(tdi[k])));
            }
            coeff = coeff.multiply(polynomial(-abscissae.get(i), 1.0));
        }

        return polynomials;

    }
View Full Code Here

        // build the polynomials by iterating on the top diagonal of the divided differences array
        for (int i = 0; i < topDiagonal.size(); ++i) {
            double[] tdi = topDiagonal.get(i);
            for (int k = 0; k < polynomials.length; ++k) {
                polynomials[k] = polynomials[k].add(coeff.multiply(polynomial(tdi[k])));
            }
            coeff = coeff.multiply(polynomial(-abscissae.get(i), 1.0));
        }

        return polynomials;
View Full Code Here

        for (int i = 0; i < topDiagonal.size(); ++i) {
            double[] tdi = topDiagonal.get(i);
            for (int k = 0; k < polynomials.length; ++k) {
                polynomials[k] = polynomials[k].add(coeff.multiply(polynomial(tdi[k])));
            }
            coeff = coeff.multiply(polynomial(-abscissae.get(i), 1.0));
        }

        return polynomials;

    }
View Full Code Here

        // build the polynomials by iterating on the top diagonal of the divided differences array
        for (int i = 0; i < topDiagonal.size(); ++i) {
            double[] tdi = topDiagonal.get(i);
            for (int k = 0; k < polynomials.length; ++k) {
                polynomials[k] = polynomials[k].add(coeff.multiply(polynomial(tdi[k])));
            }
            coeff = coeff.multiply(polynomial(-abscissae.get(i), 1.0));
        }

        return polynomials;
View Full Code Here

        for (int i = 0; i < topDiagonal.size(); ++i) {
            double[] tdi = topDiagonal.get(i);
            for (int k = 0; k < polynomials.length; ++k) {
                polynomials[k] = polynomials[k].add(coeff.multiply(polynomial(tdi[k])));
            }
            coeff = coeff.multiply(polynomial(-abscissae.get(i), 1.0));
        }

        return polynomials;

    }
View Full Code Here

                for (int j = n-1; j >= 0; j--) {
                    d2v = dv.add(z.multiply(d2v));
                    dv = pv.add(z.multiply(dv));
                    pv = coefficients[j].add(z.multiply(pv));
                }
                d2v = d2v.multiply(new Complex(2.0, 0.0));

                // Check for convergence.
                final double tolerance = FastMath.max(relativeAccuracy * z.abs(),
                                                      absoluteAccuracy);
                if ((z.subtract(oldz)).abs() <= tolerance) {
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.