Package org.apache.commons.math3.stat.descriptive.rank

Examples of org.apache.commons.math3.stat.descriptive.rank.Percentile


            dest.meanImpl = new Mean(dest.secondMoment);
        } else {
            dest.meanImpl = source.meanImpl.copy();
        }
        if (source.getGeoMeanImpl() instanceof GeometricMean) {
            dest.geoMeanImpl = new GeometricMean((SumOfLogs) dest.sumLogImpl);
        } else {
            dest.geoMeanImpl = source.geoMeanImpl.copy();
        }

        // Make sure that if stat == statImpl in source, same
View Full Code Here


            dest.varianceImpl = new Variance(dest.secondMoment);
        } else {
            dest.varianceImpl = source.varianceImpl.copy();
        }
        if (source.meanImpl instanceof Mean) {
            dest.meanImpl = new Mean(dest.secondMoment);
        } else {
            dest.meanImpl = source.meanImpl.copy();
        }
        if (source.getGeoMeanImpl() instanceof GeometricMean) {
            dest.geoMeanImpl = new GeometricMean((SumOfLogs) dest.sumLogImpl);
View Full Code Here

     * <p>Double.NaN is returned if no values have been added.</p>
     *
     * @return the population variance
     */
    public double getPopulationVariance() {
        Variance populationVariance = new Variance(secondMoment);
        populationVariance.setBiasCorrected(false);
        return populationVariance.getResult();
    }
View Full Code Here

        dest.secondMoment = source.secondMoment.copy();
        dest.n = source.n;

        // Keep commons-math supplied statistics with embedded moments in synch
        if (source.getVarianceImpl() instanceof Variance) {
            dest.varianceImpl = new Variance(dest.secondMoment);
        } else {
            dest.varianceImpl = source.varianceImpl.copy();
        }
        if (source.meanImpl instanceof Mean) {
            dest.meanImpl = new Mean(dest.secondMoment);
View Full Code Here

      for (int i = 1; i < values.length; i++) {
        splitPoints[i-1] = (values[i] + values[i-1]) / 2.0;
      }
      return splitPoints;
    }
    Percentile distribution = new Percentile();
    distribution.setData(values);
    double[] percentiles = new double[MAX_NUMERIC_SPLITS];
    for (int i = 0 ; i < percentiles.length; i++) {
      double p = 100.0 * ((i + 1.0) / (MAX_NUMERIC_SPLITS + 1.0));
      percentiles[i] = distribution.evaluate(p);
    }
    return percentiles;
  }
View Full Code Here

public class TimeGeneratorTest {

    @Test
    public void testRandomGenerator() {
       
        Percentile p = new Percentile(35);
        p.setData(new double[]{35});
        System.out.println(p.evaluate(5));
       
        Map<String, Object> data = new HashMap<String, Object>();
        data.put(SimulationConstants.DISTRIBUTION_TYPE, "random");
        data.put(SimulationConstants.MIN, 500L);
        data.put(SimulationConstants.MAX, 40000L);
View Full Code Here

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
View Full Code Here

        geoMeanImpl = new StorelessUnivariateStatistic[k];
        meanImpl    = new StorelessUnivariateStatistic[k];

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
View Full Code Here

     * @param checker Convergence checker.
     */
    protected BaseOptimizer(ConvergenceChecker<PAIR> checker) {
        this.checker = checker;

        evaluations = new Incrementor(0, new MaxEvalCallback());
        iterations = new Incrementor(0, new MaxIterCallback());
    }
View Full Code Here

        DimensionMismatchException, NonSelfAdjointOperatorException,
        NonPositiveDefiniteOperatorException, IllConditionedOperatorException,
        MaxCountExceededException {
        checkParameters(a, m, b, x);

        final IterationManager manager = getIterationManager();
        /* Initialization counts as an iteration. */
        manager.resetIterationCount();
        manager.incrementIterationCount();

        final State state;
        state = new State(a, m, b, goodb, shift, delta, check);
        state.init();
        state.refineSolution(x);
        IterativeLinearSolverEvent event;
        event = new DefaultIterativeLinearSolverEvent(this,
                                                      manager.getIterations(),
                                                      x,
                                                      b,
                                                      state.getNormOfResidual());
        if (state.bEqualsNullVector()) {
            /* If b = 0 exactly, stop with x = 0. */
            manager.fireTerminationEvent(event);
            return x;
        }
        /* Cause termination if beta is essentially zero. */
        final boolean earlyStop;
        earlyStop = state.betaEqualsZero() || state.hasConverged();
        manager.fireInitializationEvent(event);
        if (!earlyStop) {
            do {
                manager.incrementIterationCount();
                event = new DefaultIterativeLinearSolverEvent(this,
                                                              manager.getIterations(),
                                                              x,
                                                              b,
                                                              state.getNormOfResidual());
                manager.fireIterationStartedEvent(event);
                state.update();
                state.refineSolution(x);
                event = new DefaultIterativeLinearSolverEvent(this,
                                                              manager.getIterations(),
                                                              x,
                                                              b,
                                                              state.getNormOfResidual());
                manager.fireIterationPerformedEvent(event);
            } while (!state.hasConverged());
        }
        event = new DefaultIterativeLinearSolverEvent(this,
                                                      manager.getIterations(),
                                                      x,
                                                      b,
                                                      state.getNormOfResidual());
        manager.fireTerminationEvent(event);
        return x;
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.stat.descriptive.rank.Percentile

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.