Package org.apache.commons.math3.stat.descriptive.moment

Examples of org.apache.commons.math3.stat.descriptive.moment.VectorialCovariance


            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
            new VectorialCovariance(k, isCovarianceBiasCorrected);

    }
View Full Code Here


            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
            new VectorialCovariance(k, isCovarianceBiasCorrected);

    }
View Full Code Here

            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
            new VectorialCovariance(k, isCovarianceBiasCorrected);

    }
View Full Code Here

    @Test
    public void testMeanAndCovariance() {

        VectorialMean meanStat = new VectorialMean(mean.length);
        VectorialCovariance covStat = new VectorialCovariance(mean.length, true);
        for (int i = 0; i < 5000; ++i) {
            double[] v = generator.nextVector();
            meanStat.increment(v);
            covStat.increment(v);
        }

        double[] estimatedMean = meanStat.getResult();
        RealMatrix estimatedCovariance = covStat.getResult();
        for (int i = 0; i < estimatedMean.length; ++i) {
            Assert.assertEquals(mean[i], estimatedMean[i], 0.07);
            for (int j = 0; j <= i; ++j) {
                Assert.assertEquals(covariance.getEntry(i, j),
                                    estimatedCovariance.getEntry(i, j),
View Full Code Here

    @Test
    public void testMeanAndCorrelation() {

        VectorialMean meanStat = new VectorialMean(mean.length);
        VectorialCovariance covStat = new VectorialCovariance(mean.length, true);
        for (int i = 0; i < 10000; ++i) {
            double[] v = generator.nextVector();
            meanStat.increment(v);
            covStat.increment(v);
        }

        double[] estimatedMean = meanStat.getResult();
        double scale;
        RealMatrix estimatedCorrelation = covStat.getResult();
        for (int i = 0; i < estimatedMean.length; ++i) {
            Assert.assertEquals(mean[i], estimatedMean[i], 0.07);
            for (int j = 0; j < i; ++j) {
                scale = standardDeviation[i] * standardDeviation[j];
                Assert.assertEquals(0, estimatedCorrelation.getEntry(i, j) / scale, 0.03);
View Full Code Here

    @Test
    public void testMeanAndCovariance() {

        VectorialMean meanStat = new VectorialMean(mean.length);
        VectorialCovariance covStat = new VectorialCovariance(mean.length, true);
        for (int i = 0; i < 5000; ++i) {
            double[] v = generator.nextVector();
            meanStat.increment(v);
            covStat.increment(v);
        }

        double[] estimatedMean = meanStat.getResult();
        RealMatrix estimatedCovariance = covStat.getResult();
        for (int i = 0; i < estimatedMean.length; ++i) {
            Assert.assertEquals(mean[i], estimatedMean[i], 0.07);
            for (int j = 0; j <= i; ++j) {
                Assert.assertEquals(covariance.getEntry(i, j),
                                    estimatedCovariance.getEntry(i, j),
View Full Code Here

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
View Full Code Here

        geoMeanImpl = new StorelessUnivariateStatistic[k];
        meanImpl    = new StorelessUnivariateStatistic[k];

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
View Full Code Here

     * @param checker Convergence checker.
     */
    protected BaseOptimizer(ConvergenceChecker<PAIR> checker) {
        this.checker = checker;

        evaluations = new Incrementor(0, new MaxEvalCallback());
        iterations = new Incrementor(0, new MaxIterCallback());
    }
View Full Code Here

        DimensionMismatchException, NonSelfAdjointOperatorException,
        NonPositiveDefiniteOperatorException, IllConditionedOperatorException,
        MaxCountExceededException {
        checkParameters(a, m, b, x);

        final IterationManager manager = getIterationManager();
        /* Initialization counts as an iteration. */
        manager.resetIterationCount();
        manager.incrementIterationCount();

        final State state;
        state = new State(a, m, b, goodb, shift, delta, check);
        state.init();
        state.refineSolution(x);
        IterativeLinearSolverEvent event;
        event = new DefaultIterativeLinearSolverEvent(this,
                                                      manager.getIterations(),
                                                      x,
                                                      b,
                                                      state.getNormOfResidual());
        if (state.bEqualsNullVector()) {
            /* If b = 0 exactly, stop with x = 0. */
            manager.fireTerminationEvent(event);
            return x;
        }
        /* Cause termination if beta is essentially zero. */
        final boolean earlyStop;
        earlyStop = state.betaEqualsZero() || state.hasConverged();
        manager.fireInitializationEvent(event);
        if (!earlyStop) {
            do {
                manager.incrementIterationCount();
                event = new DefaultIterativeLinearSolverEvent(this,
                                                              manager.getIterations(),
                                                              x,
                                                              b,
                                                              state.getNormOfResidual());
                manager.fireIterationStartedEvent(event);
                state.update();
                state.refineSolution(x);
                event = new DefaultIterativeLinearSolverEvent(this,
                                                              manager.getIterations(),
                                                              x,
                                                              b,
                                                              state.getNormOfResidual());
                manager.fireIterationPerformedEvent(event);
            } while (!state.hasConverged());
        }
        event = new DefaultIterativeLinearSolverEvent(this,
                                                      manager.getIterations(),
                                                      x,
                                                      b,
                                                      state.getNormOfResidual());
        manager.fireTerminationEvent(event);
        return x;
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.stat.descriptive.moment.VectorialCovariance

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.