Package org.apache.commons.math3.stat.descriptive

Examples of org.apache.commons.math3.stat.descriptive.SummaryStatistics


    }
    @Test
    public void testTwoSampleTHomoscedastic() {
        double[] sample1 ={2, 4, 6, 8, 10, 97};
        double[] sample2 = {4, 6, 8, 10, 16};
        SummaryStatistics sampleStats1 = new SummaryStatistics();
        for (int i = 0; i < sample1.length; i++) {
            sampleStats1.addValue(sample1[i]);
        }
        SummaryStatistics sampleStats2 = new SummaryStatistics();
        for (int i = 0; i < sample2.length; i++) {
            sampleStats2.addValue(sample2[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        Assert.assertEquals("two sample homoscedastic t stat", 0.73096310086,
              testStatistic.homoscedasticT(sample1, sample2), 10E-11);
View Full Code Here


    @Test
    public void testOneSampleT() {
        double[] observed =
            {93.0, 103.0, 95.0, 101.0, 91.0, 105.0, 96.0, 94.0, 101.088.0, 98.0, 94.0, 101.0, 92.0, 95.0 };
        double mu = 100.0;
        SummaryStatistics sampleStats = null;
        sampleStats = new SummaryStatistics();
        for (int i = 0; i < observed.length; i++) {
            sampleStats.addValue(observed[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        Assert.assertEquals("t statistic",  -2.81976445346,
                TestUtils.t(mu, observed), 10E-10);
View Full Code Here

    @Test
    public void testOneSampleTTest() {
        double[] oneSidedP =
            {2d, 0d, 6d, 6d, 3d, 3d, 2d, 3d, -6d, 6d, 6d, 6d, 3d, 0d, 1d, 1d, 0d, 2d, 3d, 3d };
        SummaryStatistics oneSidedPStats = new SummaryStatistics();
        for (int i = 0; i < oneSidedP.length; i++) {
            oneSidedPStats.addValue(oneSidedP[i]);
        }
        // Target comparison values computed using R version 1.8.1 (Linux version)
        Assert.assertEquals("one sample t stat", 3.86485535541,
                TestUtils.t(0d, oneSidedP), 10E-10);
        Assert.assertEquals("one sample t stat", 3.86485535541,
View Full Code Here

    @Test
    public void testTwoSampleTHeterscedastic() {
        double[] sample1 = { 7d, -4d, 18d, 17d, -3d, -5d, 1d, 10d, 11d, -2d };
        double[] sample2 = { -1d, 12d, -1d, -3d, 3d, -5d, 5d, 2d, -11d, -1d, -3d };
        SummaryStatistics sampleStats1 = new SummaryStatistics();
        for (int i = 0; i < sample1.length; i++) {
            sampleStats1.addValue(sample1[i]);
        }
        SummaryStatistics sampleStats2 = new SummaryStatistics();
        for (int i = 0; i < sample2.length; i++) {
            sampleStats2.addValue(sample2[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        Assert.assertEquals("two sample heteroscedastic t stat", 1.60371728768,
                TestUtils.t(sample1, sample2), 1E-10);
View Full Code Here

    }
    @Test
    public void testTwoSampleTHomoscedastic() {
        double[] sample1 ={2, 4, 6, 8, 10, 97};
        double[] sample2 = {4, 6, 8, 10, 16};
        SummaryStatistics sampleStats1 = new SummaryStatistics();
        for (int i = 0; i < sample1.length; i++) {
            sampleStats1.addValue(sample1[i]);
        }
        SummaryStatistics sampleStats2 = new SummaryStatistics();
        for (int i = 0; i < sample2.length; i++) {
            sampleStats2.addValue(sample2[i]);
        }

        // Target comparison values computed using R version 1.8.1 (Linux version)
        Assert.assertEquals("two sample homoscedastic t stat", 0.73096310086,
                TestUtils.homoscedasticT(sample1, sample2), 10E-11);
View Full Code Here

                    .append("must be of primitive of type");
                throw new IllegalArgumentException(builder.toString());
            }
        }

        final SummaryStatistics stat = new SummaryStatistics();
        final Object[] parameters = new Object[types.length];
        while (true) {
            try {
                for (int i = 0; i < parameters.length; i++) {
                    parameters[i] = readAndWritePrimitiveValue(in, out,
                                                               types[i]);
                }
                final double expected = in.readDouble();
                if (FastMath.abs(expected) > 1E-16) {
                    final Object value = method.invoke(null, parameters);
                    final double actual = ((Double) value).doubleValue();
                    final double err = FastMath.abs(actual - expected);
                    final double ulps = err / FastMath.ulp(expected);
                    out.writeDouble(expected);
                    out.writeDouble(actual);
                    out.writeDouble(ulps);
                    stat.addValue(ulps);
                }
            } catch (EOFException e) {
                break;
            }
        }
View Full Code Here

            final DataInputStream in;
            in = new DataInputStream(new FileInputStream(inputFileName));
            final DataOutputStream out;
            out = new DataOutputStream(new FileOutputStream(outputFileName));

            final SummaryStatistics stats;
            stats = assessAccuracy(properties.method, in, out);

            System.out.println("input file name = " + inputFileName);
            System.out.println("output file name = " + outputFileName);
            System.out.println(stats);
View Full Code Here

                testStatistic.chiSquare(expected,observed) < 16.27);
    }

    @Test
    public void testDoubleDirect() {
        SummaryStatistics sample = new SummaryStatistics();
        final int N = 10000;
        for (int i = 0; i < N; ++i) {
            sample.addValue(generator.nextDouble());
        }
        Assert.assertEquals("Note: This test will fail randomly about 1 in 100 times.",
                0.5, sample.getMean(), FastMath.sqrt(N/12.0) * 2.576);
        Assert.assertEquals(1.0 / (2.0 * FastMath.sqrt(3.0)),
                     sample.getStandardDeviation(), 0.01);
    }
View Full Code Here

                     sample.getStandardDeviation(), 0.01);
    }

    @Test
    public void testFloatDirect() {
        SummaryStatistics sample = new SummaryStatistics();
        final int N = 1000;
        for (int i = 0; i < N; ++i) {
            sample.addValue(generator.nextFloat());
        }
        Assert.assertEquals("Note: This test will fail randomly about 1 in 100 times.",
                0.5, sample.getMean(), FastMath.sqrt(N/12.0) * 2.576);
        Assert.assertEquals(1.0 / (2.0 * FastMath.sqrt(3.0)),
                     sample.getStandardDeviation(), 0.01);
    }
View Full Code Here

        double next = 0.0;
        double tolerance = 0.1;
        vs.computeDistribution();
        Assert.assertTrue("empirical distribution property",
            vs.getEmpiricalDistribution() != null);
        SummaryStatistics stats = new SummaryStatistics();
        for (int i = 1; i < 1000; i++) {
            next = vs.getNext();
            stats.addValue(next);
        }
        Assert.assertEquals("mean", 5.069831575018909, stats.getMean(), tolerance);
        Assert.assertEquals("std dev", 1.0173699343977738, stats.getStandardDeviation(),
            tolerance);

        vs.computeDistribution(500);
        stats = new SummaryStatistics();
        for (int i = 1; i < 1000; i++) {
            next = vs.getNext();
            stats.addValue(next);
        }
        Assert.assertEquals("mean", 5.069831575018909, stats.getMean(), tolerance);
        Assert.assertEquals("std dev", 1.0173699343977738, stats.getStandardDeviation(),
            tolerance);
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.stat.descriptive.SummaryStatistics

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.