Package org.apache.commons.math3.stat

Examples of org.apache.commons.math3.stat.Frequency


            checkNextSecureLongUniform(2, 12);
        }
    }
   
    private void checkNextSecureLongUniform(int min, int max) throws Exception {
        final Frequency freq = new Frequency();
        for (int i = 0; i < smallSampleSize; i++) {
            final long value = randomData.nextSecureLong(min, max);
            Assert.assertTrue("nextLong range", (value >= min) && (value <= max));
            freq.addValue(value);
        }
        final int len = max - min + 1;
        final long[] observed = new long[len];
        for (int i = 0; i < len; i++) {
            observed[i] = freq.getCount(min + i);
        }
        final double[] expected = new double[len];
        for (int i = 0; i < len; i++) {
            expected[i] = 1d / len;
        }
View Full Code Here


            checkNextSecureIntUniform(2, 12);
        }
    }
    
    private void checkNextSecureIntUniform(int min, int max) throws Exception {
        final Frequency freq = new Frequency();
        for (int i = 0; i < smallSampleSize; i++) {
            final int value = randomData.nextSecureInt(min, max);
            Assert.assertTrue("nextInt range", (value >= min) && (value <= max));
            freq.addValue(value);
        }
        final int len = max - min + 1;
        final long[] observed = new long[len];
        for (int i = 0; i < len; i++) {
            observed[i] = freq.getCount(min + i);
        }
        final double[] expected = new double[len];
        for (int i = 0; i < len; i++) {
            expected[i] = 1d / len;
        }
View Full Code Here

            randomData.nextPoisson(0);
            Assert.fail("zero mean -- expecting MathIllegalArgumentException");
        } catch (MathIllegalArgumentException ex) {
            // ignored
        }
        Frequency f = new Frequency();
        for (int i = 0; i < largeSampleSize; i++) {
            f.addValue(randomData.nextPoisson(4.0d));
        }
        long cumFreq = f.getCount(0) + f.getCount(1) + f.getCount(2)
                + f.getCount(3) + f.getCount(4) + f.getCount(5);
        long sumFreq = f.getSumFreq();
        double cumPct = Double.valueOf(cumFreq).doubleValue()
                / Double.valueOf(sumFreq).doubleValue();
        Assert.assertEquals("cum Poisson(4)", cumPct, 0.7851, 0.2);
        try {
            randomData.nextPoisson(-1);
View Full Code Here

        // Generate sample values
        final int sampleSize = 1000;        // Number of deviates to generate
        final int minExpectedCount = 7;     // Minimum size of expected bin count
        long maxObservedValue = 0;
        final double alpha = 0.001;         // Probability of false failure
        Frequency frequency = new Frequency();
        for (int i = 0; i < sampleSize; i++) {
            long value = randomData.nextPoisson(mean);
            if (value > maxObservedValue) {
                maxObservedValue = value;
            }
            frequency.addValue(value);
        }

        /*
         *  Set up bins for chi-square test.
         *  Ensure expected counts are all at least minExpectedCount.
         *  Start with upper and lower tail bins.
         *  Lower bin = [0, lower); Upper bin = [upper, +inf).
         */
        PoissonDistribution poissonDistribution = new PoissonDistribution(mean);
        int lower = 1;
        while (poissonDistribution.cumulativeProbability(lower - 1) * sampleSize < minExpectedCount) {
            lower++;
        }
        int upper = (int) (5 * mean)// Even for mean = 1, not much mass beyond 5
        while ((1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize < minExpectedCount) {
            upper--;
        }

        // Set bin width for interior bins.  For poisson, only need to look at end bins.
        int binWidth = 0;
        boolean widthSufficient = false;
        double lowerBinMass = 0;
        double upperBinMass = 0;
        while (!widthSufficient) {
            binWidth++;
            lowerBinMass = poissonDistribution.cumulativeProbability(lower - 1, lower + binWidth - 1);
            upperBinMass = poissonDistribution.cumulativeProbability(upper - binWidth - 1, upper - 1);
            widthSufficient = FastMath.min(lowerBinMass, upperBinMass) * sampleSize >= minExpectedCount;
        }

        /*
         *  Determine interior bin bounds.  Bins are
         *  [1, lower = binBounds[0]), [lower, binBounds[1]), [binBounds[1], binBounds[2]), ... ,
         *    [binBounds[binCount - 2], upper = binBounds[binCount - 1]), [upper, +inf)
         *
         */
        List<Integer> binBounds = new ArrayList<Integer>();
        binBounds.add(lower);
        int bound = lower + binWidth;
        while (bound < upper - binWidth) {
            binBounds.add(bound);
            bound += binWidth;
        }
        binBounds.add(upper); // The size of bin [binBounds[binCount - 2], upper) satisfies binWidth <= size < 2*binWidth.

        // Compute observed and expected bin counts
        final int binCount = binBounds.size() + 1;
        long[] observed = new long[binCount];
        double[] expected = new double[binCount];

        // Bottom bin
        observed[0] = 0;
        for (int i = 0; i < lower; i++) {
            observed[0] += frequency.getCount(i);
        }
        expected[0] = poissonDistribution.cumulativeProbability(lower - 1) * sampleSize;

        // Top bin
        observed[binCount - 1] = 0;
        for (int i = upper; i <= maxObservedValue; i++) {
            observed[binCount - 1] += frequency.getCount(i);
        }
        expected[binCount - 1] = (1 - poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize;

        // Interior bins
        for (int i = 1; i < binCount - 1; i++) {
            observed[i] = 0;
            for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
                observed[i] += frequency.getCount(j);
            } // Expected count is (mass in [binBounds[i-1], binBounds[i])) * sampleSize
            expected[i] = (poissonDistribution.cumulativeProbability(binBounds.get(i) - 1) -
                poissonDistribution.cumulativeProbability(binBounds.get(i - 1) -1)) * sampleSize;
        }

View Full Code Here

            // ignored
        }
        if (hexString.length() != 1) {
            Assert.fail("incorrect length for generated string");
        }
        Frequency f = new Frequency();
        for (int i = 0; i < smallSampleSize; i++) {
            hexString = randomData.nextHexString(100);
            if (hexString.length() != 100) {
                Assert.fail("incorrect length for generated string");
            }
            for (int j = 0; j < hexString.length(); j++) {
                f.addValue(hexString.substring(j, j + 1));
            }
        }
        double[] expected = new double[16];
        long[] observed = new long[16];
        for (int i = 0; i < 16; i++) {
            expected[i] = (double) smallSampleSize * 100 / 16;
            observed[i] = f.getCount(hex[i]);
        }
        /*
         * Use ChiSquare dist with df = 16-1 = 15, alpha = .001 Change to 30.58
         * for alpha = .01
         */
 
View Full Code Here

            // ignored
        }
        if (hexString.length() != 1) {
            Assert.fail("incorrect length for generated string");
        }
        Frequency f = new Frequency();
        for (int i = 0; i < smallSampleSize; i++) {
            hexString = randomData.nextSecureHexString(100);
            if (hexString.length() != 100) {
                Assert.fail("incorrect length for generated string");
            }
            for (int j = 0; j < hexString.length(); j++) {
                f.addValue(hexString.substring(j, j + 1));
            }
        }
        double[] expected = new double[16];
        long[] observed = new long[16];
        for (int i = 0; i < 16; i++) {
            expected[i] = (double) smallSampleSize * 100 / 16;
            observed[i] = f.getCount(hex[i]);
        }
        /*
         * Use ChiSquare dist with df = 16-1 = 15, alpha = .001 Change to 30.58
         * for alpha = .01
         */
 
View Full Code Here

        binBounds[0] = min + binSize;
        for (int i = 1; i < binCount - 1; i++) {
            binBounds[i] = binBounds[i - 1] + binSize;  // + instead of * to avoid overflow in extreme case
        }
       
        final Frequency freq = new Frequency();
        for (int i = 0; i < smallSampleSize; i++) {
            final double value = randomData.nextUniform(min, max);
            Assert.assertTrue("nextUniform range", (value > min) && (value < max));
            // Find bin
            int j = 0;
            while (j < binCount - 1 && value > binBounds[j]) {
                j++;
            }
            freq.addValue(j);
        }
      
        final long[] observed = new long[binCount];
        for (int i = 0; i < binCount; i++) {
            observed[i] = freq.getCount(i);
        }
        final double[] expected = new double[binCount];
        for (int i = 0; i < binCount; i++) {
            expected[i] = 1d / binCount;
        }
View Full Code Here

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
View Full Code Here

        geoMeanImpl = new StorelessUnivariateStatistic[k];
        meanImpl    = new StorelessUnivariateStatistic[k];

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
View Full Code Here

     * @param checker Convergence checker.
     */
    protected BaseOptimizer(ConvergenceChecker<PAIR> checker) {
        this.checker = checker;

        evaluations = new Incrementor(0, new MaxEvalCallback());
        iterations = new Incrementor(0, new MaxIterCallback());
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.stat.Frequency

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.