Package org.apache.commons.math3.random

Examples of org.apache.commons.math3.random.RandomVectorGenerator


    for (SiteWithPolynomial site : sites) {
     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
        vector.setEntry(row, nearSite.pos.y);
      }
     
      QRDecomposition qr = new QRDecomposition(matrix);
      RealVector solution = qr.getSolver().solve(vector);
       
      double[] coeffs = solution.toArray();
     
      for (double coeff : coeffs) {
        if (coeff > 10e3) {
          continue calculatePolynomials;
        }
View Full Code Here


                return Double.compare(weightedResidual(o1),
                                      weightedResidual(o2));
            }

            private double weightedResidual(final PointVectorValuePair pv) {
                final RealVector v = new ArrayRealVector(pv.getValueRef(), false);
                final RealVector r = target.subtract(v);
                return r.dotProduct(weight.operate(r));
            }
        };
    }
View Full Code Here

        // Multi-start loop.
        for (int i = 0; i < starts; i++) {
            // CHECKSTYLE: stop IllegalCatch
            try {
                // Decrease number of allowed evaluations.
                optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations);
                // New start value.
                final double s = (i == 0) ?
                    startValue :
                    min + generator.nextDouble() * (max - min);
                optimData[searchIntervalIndex] = new SearchInterval(min, max, s);
View Full Code Here

                { -1.21.0 }, { 0.9, 1.2 } , 3.5, -2.3 }
            });
        underlying.setSimplex(simplex);
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(2, new GaussianRandomGenerator(g));
        MultivariateMultiStartOptimizer optimizer =
            new MultivariateMultiStartOptimizer(underlying, 10, generator);
        PointValuePair optimum =
            optimizer.optimize(1100, rosenbrock, GoalType.MINIMIZE, new double[] { -1.2, 1.0 });
View Full Code Here

                return cg.getConvergenceChecker();
            }
        };
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(753289573253l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(new double[] { 50.0, 50.0 }, new double[] { 10.0, 10.0 },
                                                  new GaussianRandomGenerator(g));
        MultivariateDifferentiableMultiStartOptimizer optimizer =
            new MultivariateDifferentiableMultiStartOptimizer(underlying, 10, generator);
        PointValuePair optimum =
View Full Code Here

                return gn.getConvergenceChecker();
            }
        };
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultivariateDifferentiableVectorMultiStartOptimizer optimizer =
            new MultivariateDifferentiableVectorMultiStartOptimizer(underlyingOptimizer,
                                                                       10, generator);
View Full Code Here

                return gn.getConvergenceChecker();
            }
        };
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(12373523445l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultivariateDifferentiableVectorMultiStartOptimizer optimizer =
            new MultivariateDifferentiableVectorMultiStartOptimizer(underlyingOptimizer,
                                                                       10, generator);
        optimizer.optimize(100, new MultivariateDifferentiableVectorFunction() {
View Full Code Here

        JacobianMultivariateVectorOptimizer underlyingOptimizer
            = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6));
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator
            = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultiStartMultivariateVectorOptimizer optimizer
            = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);

        optimizer.getOptima();
View Full Code Here

            = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 });
        JacobianMultivariateVectorOptimizer underlyingOptimizer
            = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6));
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator
            = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultiStartMultivariateVectorOptimizer optimizer
            = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);

        PointVectorValuePair optimum
View Full Code Here

                return super.optimize(filtered);
            }
        };
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator =
                new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        MultiStartMultivariateVectorOptimizer optimizer =
                new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);

        optimizer.optimize(new MaxEval(100),
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.random.RandomVectorGenerator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.