Package org.apache.commons.math3.random

Examples of org.apache.commons.math3.random.GaussianRandomGenerator


            new GaussNewtonOptimizer(true,
                                     new SimpleVectorValueChecker(1.0e-6, 1.0e-6));
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(16069223052l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        DifferentiableMultivariateVectorMultiStartOptimizer optimizer =
            new DifferentiableMultivariateVectorMultiStartOptimizer(underlyingOptimizer,
                                                                       10, generator);

        // no optima before first optimization attempt
View Full Code Here


            new GaussNewtonOptimizer(true,
                                     new SimpleVectorValueChecker(1.0e-6, 1.0e-6));
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(12373523445l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
        DifferentiableMultivariateVectorMultiStartOptimizer optimizer =
            new DifferentiableMultivariateVectorMultiStartOptimizer(underlyingOptimizer,
                                                                       10, generator);
        optimizer.optimize(100, new DifferentiableMultivariateVectorFunction() {
                public MultivariateMatrixFunction jacobian() {
View Full Code Here

                                                    new SimpleValueChecker(1.0e-10, 1.0e-10));
        JDKRandomGenerator g = new JDKRandomGenerator();
        g.setSeed(753289573253l);
        RandomVectorGenerator generator =
            new UncorrelatedRandomVectorGenerator(new double[] { 50.0, 50.0 }, new double[] { 10.0, 10.0 },
                                                  new GaussianRandomGenerator(g));
        DifferentiableMultivariateMultiStartOptimizer optimizer =
            new DifferentiableMultivariateMultiStartOptimizer(underlying, 10, generator);
        PointValuePair optimum =
            optimizer.optimize(200, circle, GoalType.MINIMIZE, new double[] { 98.680, 47.345 });
        Assert.assertEquals(200, optimizer.getMaxEvaluations());
View Full Code Here

       
        // Get covariance matrix for columns
        RealMatrix cov = (new Covariance(errorSeeds)).getCovarianceMatrix();
         
        // Create a CorrelatedRandomVectorGenerator to use to generate correlated errors
        GaussianRandomGenerator rawGenerator = new GaussianRandomGenerator(rg);
        double[] errorMeans = new double[nObs]// Counting on init to 0 here
        CorrelatedRandomVectorGenerator gen = new CorrelatedRandomVectorGenerator(errorMeans, cov,
         1.0e-12 * cov.getNorm(), rawGenerator);
       
        // Now start generating models.  Use Longley X matrix on LHS
View Full Code Here

     * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @throws NotStrictlyPositiveException if {@code mean <= 0}.
     * @since 2.1
     */
    public ExponentialDistribution(double mean, double inverseCumAccuracy) {
        this(new Well19937c(), mean, inverseCumAccuracy);
    }
View Full Code Here

     * @param upper Upper bound (inclusive) of this distribution.
     * @throws NumberIsTooLargeException if {@code lower >= upper}.
     */
    public UniformIntegerDistribution(int lower, int upper)
        throws NumberIsTooLargeException {
        this(new Well19937c(), lower, upper);
    }
View Full Code Here

     * @throws NumberIsTooLargeException if {@code a >= b} or if {@code c > b}.
     * @throws NumberIsTooSmallException if {@code c < a}.
     */
    public TriangularDistribution(double a, double c, double b)
        throws NumberIsTooLargeException, NumberIsTooSmallException {
        this(new Well19937c(), a, c, b);
    }
View Full Code Here

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
View Full Code Here

        geoMeanImpl = new StorelessUnivariateStatistic[k];
        meanImpl    = new StorelessUnivariateStatistic[k];

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
View Full Code Here

     * @param checker Convergence checker.
     */
    protected BaseOptimizer(ConvergenceChecker<PAIR> checker) {
        this.checker = checker;

        evaluations = new Incrementor(0, new MaxEvalCallback());
        iterations = new Incrementor(0, new MaxIterCallback());
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.random.GaussianRandomGenerator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.