Package org.apache.commons.math3.optimization

Examples of org.apache.commons.math3.optimization.PointVectorValuePair$DataTransferObject


        final ConvergenceChecker<PointVectorValuePair> checker
            = getConvergenceChecker();

        // iterate until convergence is reached
        PointVectorValuePair current = null;
        int iter = 0;
        for (boolean converged = false; !converged;) {
            ++iter;

            // evaluate the objective function and its jacobian
            PointVectorValuePair previous = current;
            updateResidualsAndCost();
            updateJacobian();
            current = new PointVectorValuePair(point, objective);

            final double[] targetValues = getTargetRef();
            final double[] residualsWeights = getWeightRef();

            // build the linear problem
View Full Code Here


            weights[i] = point.getWeight();
            ++i;
        }

        // perform the fit
        PointVectorValuePair optimum =
            optimizer.optimize(maxEval, new TheoreticalValuesFunction(f),
                               target, weights, initialGuess);

        // extract the coefficients
        return optimum.getPointRef();
    }
View Full Code Here

        updateResidualsAndCost();

        // outer loop
        lmPar = 0;
        boolean firstIteration = true;
        PointVectorValuePair current = new PointVectorValuePair(point, objective);
        int iter = 0;
        final ConvergenceChecker<PointVectorValuePair> checker = getConvergenceChecker();
        while (true) {
            ++iter;

            for (int i=0;i<rows;i++) {
                qtf[i]=weightedResiduals[i];
            }

            // compute the Q.R. decomposition of the jacobian matrix
            PointVectorValuePair previous = current;
            updateJacobian();
            qrDecomposition();

            // compute Qt.res
            qTy(qtf);
            // now we don't need Q anymore,
            // so let jacobian contain the R matrix with its diagonal elements
            for (int k = 0; k < solvedCols; ++k) {
                int pk = permutation[k];
                weightedResidualJacobian[k][pk] = diagR[pk];
            }

            if (firstIteration) {
                // scale the point according to the norms of the columns
                // of the initial jacobian
                xNorm = 0;
                for (int k = 0; k < cols; ++k) {
                    double dk = jacNorm[k];
                    if (dk == 0) {
                        dk = 1.0;
                    }
                    double xk = dk * point[k];
                    xNorm  += xk * xk;
                    diag[k] = dk;
                }
                xNorm = FastMath.sqrt(xNorm);

                // initialize the step bound delta
                delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);
            }

            // check orthogonality between function vector and jacobian columns
            double maxCosine = 0;
            if (cost != 0) {
                for (int j = 0; j < solvedCols; ++j) {
                    int    pj = permutation[j];
                    double s  = jacNorm[pj];
                    if (s != 0) {
                        double sum = 0;
                        for (int i = 0; i <= j; ++i) {
                            sum += weightedResidualJacobian[i][pj] * qtf[i];
                        }
                        maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * cost));
                    }
                }
            }
            if (maxCosine <= orthoTolerance) {
                // convergence has been reached
                updateResidualsAndCost();
                current = new PointVectorValuePair(point, objective);
                return current;
            }

            // rescale if necessary
            for (int j = 0; j < cols; ++j) {
                diag[j] = FastMath.max(diag[j], jacNorm[j]);
            }

            // inner loop
            for (double ratio = 0; ratio < 1.0e-4;) {

                // save the state
                for (int j = 0; j < solvedCols; ++j) {
                    int pj = permutation[j];
                    oldX[pj] = point[pj];
                }
                double previousCost = cost;
                double[] tmpVec = weightedResiduals;
                weightedResiduals = oldRes;
                oldRes    = tmpVec;
                tmpVec    = objective;
                objective = oldObj;
                oldObj    = tmpVec;

                // determine the Levenberg-Marquardt parameter
                determineLMParameter(qtf, delta, diag, work1, work2, work3);

                // compute the new point and the norm of the evolution direction
                double lmNorm = 0;
                for (int j = 0; j < solvedCols; ++j) {
                    int pj = permutation[j];
                    lmDir[pj] = -lmDir[pj];
                    point[pj] = oldX[pj] + lmDir[pj];
                    double s = diag[pj] * lmDir[pj];
                    lmNorm  += s * s;
                }
                lmNorm = FastMath.sqrt(lmNorm);
                // on the first iteration, adjust the initial step bound.
                if (firstIteration) {
                    delta = FastMath.min(delta, lmNorm);
                }

                // evaluate the function at x + p and calculate its norm
                updateResidualsAndCost();

                // compute the scaled actual reduction
                double actRed = -1.0;
                if (0.1 * cost < previousCost) {
                    double r = cost / previousCost;
                    actRed = 1.0 - r * r;
                }

                // compute the scaled predicted reduction
                // and the scaled directional derivative
                for (int j = 0; j < solvedCols; ++j) {
                    int pj = permutation[j];
                    double dirJ = lmDir[pj];
                    work1[j] = 0;
                    for (int i = 0; i <= j; ++i) {
                        work1[i] += weightedResidualJacobian[i][pj] * dirJ;
                    }
                }
                double coeff1 = 0;
                for (int j = 0; j < solvedCols; ++j) {
                    coeff1 += work1[j] * work1[j];
                }
                double pc2 = previousCost * previousCost;
                coeff1 = coeff1 / pc2;
                double coeff2 = lmPar * lmNorm * lmNorm / pc2;
                double preRed = coeff1 + 2 * coeff2;
                double dirDer = -(coeff1 + coeff2);

                // ratio of the actual to the predicted reduction
                ratio = (preRed == 0) ? 0 : (actRed / preRed);

                // update the step bound
                if (ratio <= 0.25) {
                    double tmp =
                        (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
                        if ((0.1 * cost >= previousCost) || (tmp < 0.1)) {
                            tmp = 0.1;
                        }
                        delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
                        lmPar /= tmp;
                } else if ((lmPar == 0) || (ratio >= 0.75)) {
                    delta = 2 * lmNorm;
                    lmPar *= 0.5;
                }

                // test for successful iteration.
                if (ratio >= 1.0e-4) {
                    // successful iteration, update the norm
                    firstIteration = false;
                    xNorm = 0;
                    for (int k = 0; k < cols; ++k) {
                        double xK = diag[k] * point[k];
                        xNorm += xK * xK;
                    }
                    xNorm = FastMath.sqrt(xNorm);
                    current = new PointVectorValuePair(point, objective);

                    // tests for convergence.
                    if (checker != null) {
                        // we use the vectorial convergence checker
                        if (checker.converged(iter, previous, current)) {
View Full Code Here

                2, 13 },
                { -3, 0, -9 }
        }, new double[] { 1, 1, 1 });

        AbstractLeastSquaresOptimizer optimizer = createOptimizer();
        PointVectorValuePair optimum = optimizer.optimize(100, problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 0, 0, 0 });
        Assert.assertTrue(FastMath.sqrt(problem.target.length) * optimizer.getRMS() > 0.6);

        optimizer.computeCovariances(optimum.getPoint(), 1.5e-14);
    }
View Full Code Here

        }

        final LevenbergMarquardtOptimizer optimizer
            = new LevenbergMarquardtOptimizer();

        final PointVectorValuePair optimum
            = optimizer.optimize(100, problem, dataPoints[1], weights,
                               new double[] { 10, 900, 80, 27, 225 });

        final double[] solution = optimum.getPoint();
        final double[] expectedSolution = { 10.4, 958.3, 131.4, 33.9, 205.0 };

        final double[][] covarMatrix = optimizer.computeCovariances(solution, 1e-14);
        final double[][] expectedCovarMatrix = {
            { 3.38, -3.69, 27.98, -2.34, -49.24 },
View Full Code Here

        // First guess for the center's coordinates and radius.
        final double[] init = { 90, 659, 115 };

        final LevenbergMarquardtOptimizer optimizer
            = new LevenbergMarquardtOptimizer();
        final PointVectorValuePair optimum = optimizer.optimize(100, circle,
                                                                circle.target(), circle.weight(),
                                                                init);

        final double[] paramFound = optimum.getPoint();

        // Retrieve errors estimation.
        final double[][] covMatrix = optimizer.computeCovariances(paramFound, 1e-14);
        final double[] asymptoticStandardErrorFound = optimizer.guessParametersErrors();
        final double[] sigmaFound = new double[covMatrix.length];
View Full Code Here

        final RealMatrix weightMatrixSqrt = getWeightSquareRoot();

        // Evaluate the function at the starting point and calculate its norm.
        double[] currentObjective = computeObjectiveValue(currentPoint);
        double[] currentResiduals = computeResiduals(currentObjective);
        PointVectorValuePair current = new PointVectorValuePair(currentPoint, currentObjective);
        double currentCost = computeCost(currentResiduals);

        // Outer loop.
        lmPar = 0;
        boolean firstIteration = true;
        int iter = 0;
        final ConvergenceChecker<PointVectorValuePair> checker = getConvergenceChecker();
        while (true) {
            ++iter;
            final PointVectorValuePair previous = current;

            // QR decomposition of the jacobian matrix
            qrDecomposition(computeWeightedJacobian(currentPoint));

            weightedResidual = weightMatrixSqrt.operate(currentResiduals);
            for (int i = 0; i < nR; i++) {
                qtf[i] = weightedResidual[i];
            }

            // compute Qt.res
            qTy(qtf);

            // now we don't need Q anymore,
            // so let jacobian contain the R matrix with its diagonal elements
            for (int k = 0; k < solvedCols; ++k) {
                int pk = permutation[k];
                weightedJacobian[k][pk] = diagR[pk];
            }

            if (firstIteration) {
                // scale the point according to the norms of the columns
                // of the initial jacobian
                xNorm = 0;
                for (int k = 0; k < nC; ++k) {
                    double dk = jacNorm[k];
                    if (dk == 0) {
                        dk = 1.0;
                    }
                    double xk = dk * currentPoint[k];
                    xNorm  += xk * xk;
                    diag[k] = dk;
                }
                xNorm = FastMath.sqrt(xNorm);

                // initialize the step bound delta
                delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);
            }

            // check orthogonality between function vector and jacobian columns
            double maxCosine = 0;
            if (currentCost != 0) {
                for (int j = 0; j < solvedCols; ++j) {
                    int    pj = permutation[j];
                    double s  = jacNorm[pj];
                    if (s != 0) {
                        double sum = 0;
                        for (int i = 0; i <= j; ++i) {
                            sum += weightedJacobian[i][pj] * qtf[i];
                        }
                        maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * currentCost));
                    }
                }
            }
            if (maxCosine <= orthoTolerance) {
                // Convergence has been reached.
                setCost(currentCost);
                // Update (deprecated) "point" field.
                point = current.getPoint();
                return current;
            }

            // rescale if necessary
            for (int j = 0; j < nC; ++j) {
                diag[j] = FastMath.max(diag[j], jacNorm[j]);
            }

            // Inner loop.
            for (double ratio = 0; ratio < 1.0e-4;) {

                // save the state
                for (int j = 0; j < solvedCols; ++j) {
                    int pj = permutation[j];
                    oldX[pj] = currentPoint[pj];
                }
                final double previousCost = currentCost;
                double[] tmpVec = weightedResidual;
                weightedResidual = oldRes;
                oldRes    = tmpVec;
                tmpVec    = currentObjective;
                currentObjective = oldObj;
                oldObj    = tmpVec;

                // determine the Levenberg-Marquardt parameter
                determineLMParameter(qtf, delta, diag, work1, work2, work3);

                // compute the new point and the norm of the evolution direction
                double lmNorm = 0;
                for (int j = 0; j < solvedCols; ++j) {
                    int pj = permutation[j];
                    lmDir[pj] = -lmDir[pj];
                    currentPoint[pj] = oldX[pj] + lmDir[pj];
                    double s = diag[pj] * lmDir[pj];
                    lmNorm  += s * s;
                }
                lmNorm = FastMath.sqrt(lmNorm);
                // on the first iteration, adjust the initial step bound.
                if (firstIteration) {
                    delta = FastMath.min(delta, lmNorm);
                }

                // Evaluate the function at x + p and calculate its norm.
                currentObjective = computeObjectiveValue(currentPoint);
                currentResiduals = computeResiduals(currentObjective);
                current = new PointVectorValuePair(currentPoint, currentObjective);
                currentCost = computeCost(currentResiduals);

                // compute the scaled actual reduction
                double actRed = -1.0;
                if (0.1 * currentCost < previousCost) {
                    double r = currentCost / previousCost;
                    actRed = 1.0 - r * r;
                }

                // compute the scaled predicted reduction
                // and the scaled directional derivative
                for (int j = 0; j < solvedCols; ++j) {
                    int pj = permutation[j];
                    double dirJ = lmDir[pj];
                    work1[j] = 0;
                    for (int i = 0; i <= j; ++i) {
                        work1[i] += weightedJacobian[i][pj] * dirJ;
                    }
                }
                double coeff1 = 0;
                for (int j = 0; j < solvedCols; ++j) {
                    coeff1 += work1[j] * work1[j];
                }
                double pc2 = previousCost * previousCost;
                coeff1 /= pc2;
                double coeff2 = lmPar * lmNorm * lmNorm / pc2;
                double preRed = coeff1 + 2 * coeff2;
                double dirDer = -(coeff1 + coeff2);

                // ratio of the actual to the predicted reduction
                ratio = (preRed == 0) ? 0 : (actRed / preRed);

                // update the step bound
                if (ratio <= 0.25) {
                    double tmp =
                        (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
                        if ((0.1 * currentCost >= previousCost) || (tmp < 0.1)) {
                            tmp = 0.1;
                        }
                        delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
                        lmPar /= tmp;
                } else if ((lmPar == 0) || (ratio >= 0.75)) {
                    delta = 2 * lmNorm;
                    lmPar *= 0.5;
                }

                // test for successful iteration.
                if (ratio >= 1.0e-4) {
                    // successful iteration, update the norm
                    firstIteration = false;
                    xNorm = 0;
                    for (int k = 0; k < nC; ++k) {
                        double xK = diag[k] * currentPoint[k];
                        xNorm += xK * xK;
                    }
                    xNorm = FastMath.sqrt(xNorm);

                    // tests for convergence.
                    if (checker != null && checker.converged(iter, previous, current)) {
                        setCost(currentCost);
                        // Update (deprecated) "point" field.
                        point = current.getPoint();
                        return current;
                    }
                } else {
                    // failed iteration, reset the previous values
                    currentCost = previousCost;
                    for (int j = 0; j < solvedCols; ++j) {
                        int pj = permutation[j];
                        currentPoint[pj] = oldX[pj];
                    }
                    tmpVec    = weightedResidual;
                    weightedResidual = oldRes;
                    oldRes    = tmpVec;
                    tmpVec    = currentObjective;
                    currentObjective = oldObj;
                    oldObj    = tmpVec;
                    // Reset "current" to previous values.
                    current = new PointVectorValuePair(currentPoint, currentObjective);
                }

                // Default convergence criteria.
                if ((FastMath.abs(actRed) <= costRelativeTolerance &&
                     preRed <= costRelativeTolerance &&
View Full Code Here

            weights[i] = point.getWeight();
            ++i;
        }

        // perform the fit
        final PointVectorValuePair optimum;
        if (optimizer == null) {
            // to be removed in 4.0
            optimum = oldOptimizer.optimize(maxEval, new OldTheoreticalValuesFunction(f),
                                            target, weights, initialGuess);
        } else {
            optimum = optimizer.optimize(maxEval, new TheoreticalValuesFunction(f),
                                         target, weights, initialGuess);
        }

        // extract the coefficients
        return optimum.getPointRef();
    }
View Full Code Here

            @Override
            protected PointVectorValuePair doOptimize() {
                final double[] params = getStartPoint();
                final double[] res = computeResiduals(computeObjectiveValue(params));
                setCost(computeCost(res));
                return new PointVectorValuePair(params, null);
            }
        };
    }
View Full Code Here

        final double[] y = dataset.getData()[1];
        final double[] w = new double[y.length];
        Arrays.fill(w, 1.0);

        final int dof = y.length - a.length;
        final PointVectorValuePair optimum = optimizer.optimize(1, dataset.getLeastSquaresProblem(), y, w, a);
        final double[] sig = optimizer.computeSigma(optimum.getPoint(), 1e-14);
        final double[] expected = dataset.getParametersStandardDeviations();
        for (int i = 0; i < sig.length; i++) {
            final double actual = FastMath.sqrt(optimizer.getChiSquare() / dof) * sig[i];
            Assert.assertEquals(dataset.getName() + ", parameter #" + i,
                                expected[i], actual, 1e-7 * expected[i]);
 
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.optimization.PointVectorValuePair$DataTransferObject

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.