Package org.apache.commons.math3.optimization

Examples of org.apache.commons.math3.optimization.PointValuePair


        double delta = 0;
        for (int i = 0; i < n; ++i) {
            delta += r[i] * searchDirection[i];
        }

        PointValuePair current = null;
        int iter = 0;
        int maxEval = getMaxEvaluations();
        while (true) {
            ++iter;

            final double objective = computeObjectiveValue(point);
            PointValuePair previous = current;
            current = new PointValuePair(point, objective);
            if (previous != null && checker.converged(iter, previous, current)) {
                // We have found an optimum.
                return current;
            }

View Full Code Here


              coefficients[i] =
                  (basicRow == null ? 0 : getEntry(basicRow, getRhsOffset())) -
                  (restrictToNonNegative ? 0 : mostNegative);
          }
      }
      return new PointValuePair(coefficients, f.getValue(coefficients));
    }
View Full Code Here

        isMinimize = (getGoalType() == GoalType.MINIMIZE);
        currentBest = new ArrayRealVector(getStartPoint());

        final double value = bobyqa(lowerBound, upperBound);

        return new PointValuePair(currentBest.getDataRef(),
                                      isMinimize ? value : -value);
    }
View Full Code Here

            // Default convergence check.
            boolean stop = 2 * (fX - fVal) <=
                (relativeThreshold * (FastMath.abs(fX) + FastMath.abs(fVal)) +
                 absoluteThreshold);

            final PointValuePair previous = new PointValuePair(x1, fX);
            final PointValuePair current = new PointValuePair(x, fVal);
            if (!stop && checker != null) {
                stop = checker.converged(iter, previous, current);
            }
            if (stop) {
                if (goal == GoalType.MINIMIZE) {
View Full Code Here

        dimension = guess.length;
        initializeCMA(guess);
        iterations = 0;
        double bestValue = fitfun.value(guess);
        push(fitnessHistory, bestValue);
        PointValuePair optimum = new PointValuePair(getStartPoint(),
                isMinimize ? bestValue : -bestValue);
        PointValuePair lastResult = null;

        // -------------------- Generation Loop --------------------------------

        generationLoop:
        for (iterations = 1; iterations <= maxIterations; iterations++) {
            // Generate and evaluate lambda offspring
            final RealMatrix arz = randn1(dimension, lambda);
            final RealMatrix arx = zeros(dimension, lambda);
            final double[] fitness = new double[lambda];
            // generate random offspring
            for (int k = 0; k < lambda; k++) {
                RealMatrix arxk = null;
                for (int i = 0; i < checkFeasableCount + 1; i++) {
                    if (diagonalOnly <= 0) {
                        arxk = xmean.add(BD.multiply(arz.getColumnMatrix(k))
                                         .scalarMultiply(sigma)); // m + sig * Normal(0,C)
                    } else {
                        arxk = xmean.add(times(diagD,arz.getColumnMatrix(k))
                                         .scalarMultiply(sigma));
                    }
                    if (i >= checkFeasableCount ||
                        fitfun.isFeasible(arxk.getColumn(0))) {
                        break;
                    }
                    // regenerate random arguments for row
                    arz.setColumn(k, randn(dimension));
                }
                copyColumn(arxk, 0, arx, k);
                try {
                    fitness[k] = fitfun.value(arx.getColumn(k)); // compute fitness
                } catch (TooManyEvaluationsException e) {
                    break generationLoop;
                }
            }
            // Sort by fitness and compute weighted mean into xmean
            final int[] arindex = sortedIndices(fitness);
            // Calculate new xmean, this is selection and recombination
            final RealMatrix xold = xmean; // for speed up of Eq. (2) and (3)
            final RealMatrix bestArx = selectColumns(arx, MathArrays.copyOf(arindex, mu));
            xmean = bestArx.multiply(weights);
            final RealMatrix bestArz = selectColumns(arz, MathArrays.copyOf(arindex, mu));
            final RealMatrix zmean = bestArz.multiply(weights);
            final boolean hsig = updateEvolutionPaths(zmean, xold);
            if (diagonalOnly <= 0) {
                updateCovariance(hsig, bestArx, arz, arindex, xold);
            } else {
                updateCovarianceDiagonalOnly(hsig, bestArz);
            }
            // Adapt step size sigma - Eq. (5)
            sigma *= FastMath.exp(FastMath.min(1, (normps/chiN - 1) * cs / damps));
            final double bestFitness = fitness[arindex[0]];
            final double worstFitness = fitness[arindex[arindex.length - 1]];
            if (bestValue > bestFitness) {
                bestValue = bestFitness;
                lastResult = optimum;
                optimum = new PointValuePair(fitfun.repair(bestArx.getColumn(0)),
                                             isMinimize ? bestFitness : -bestFitness);
                if (getConvergenceChecker() != null && lastResult != null &&
                    getConvergenceChecker().converged(iterations, optimum, lastResult)) {
                    break generationLoop;
                }
            }
            // handle termination criteria
            // Break, if fitness is good enough
            if (stopFitness != 0 && bestFitness < (isMinimize ? stopFitness : -stopFitness)) {
                break generationLoop;
            }
            final double[] sqrtDiagC = sqrt(diagC).getColumn(0);
            final double[] pcCol = pc.getColumn(0);
            for (int i = 0; i < dimension; i++) {
                if (sigma * FastMath.max(FastMath.abs(pcCol[i]), sqrtDiagC[i]) > stopTolX) {
                    break;
                }
                if (i >= dimension - 1) {
                    break generationLoop;
                }
            }
            for (int i = 0; i < dimension; i++) {
                if (sigma * sqrtDiagC[i] > stopTolUpX) {
                    break generationLoop;
                }
            }
            final double historyBest = min(fitnessHistory);
            final double historyWorst = max(fitnessHistory);
            if (iterations > 2 &&
                FastMath.max(historyWorst, worstFitness) -
                FastMath.min(historyBest, bestFitness) < stopTolFun) {
                break generationLoop;
            }
            if (iterations > fitnessHistory.length &&
                historyWorst-historyBest < stopTolHistFun) {
                break generationLoop;
            }
            // condition number of the covariance matrix exceeds 1e14
            if (max(diagD)/min(diagD) > 1e7) {
                break generationLoop;
            }
            // user defined termination
            if (getConvergenceChecker() != null) {
                final PointValuePair current
                    = new PointValuePair(bestArx.getColumn(0),
                                         isMinimize ? bestFitness : -bestFitness);
                if (lastResult != null &&
                    getConvergenceChecker().converged(iterations, current, lastResult)) {
                    break generationLoop;
                    }
View Full Code Here

                        final Comparator<PointValuePair> comparator) {
        // The simplex has n + 1 points if dimension is n.
        final int n = getDimension();

        // Interesting values.
        final PointValuePair best = getPoint(0);
        final PointValuePair secondBest = getPoint(n - 1);
        final PointValuePair worst = getPoint(n);
        final double[] xWorst = worst.getPointRef();

        // Compute the centroid of the best vertices (dismissing the worst
        // point at index n).
        final double[] centroid = new double[n];
        for (int i = 0; i < n; i++) {
            final double[] x = getPoint(i).getPointRef();
            for (int j = 0; j < n; j++) {
                centroid[j] += x[j];
            }
        }
        final double scaling = 1.0 / n;
        for (int j = 0; j < n; j++) {
            centroid[j] *= scaling;
        }

        // compute the reflection point
        final double[] xR = new double[n];
        for (int j = 0; j < n; j++) {
            xR[j] = centroid[j] + rho * (centroid[j] - xWorst[j]);
        }
        final PointValuePair reflected
            = new PointValuePair(xR, evaluationFunction.value(xR), false);

        if (comparator.compare(best, reflected) <= 0 &&
            comparator.compare(reflected, secondBest) < 0) {
            // Accept the reflected point.
            replaceWorstPoint(reflected, comparator);
        } else if (comparator.compare(reflected, best) < 0) {
            // Compute the expansion point.
            final double[] xE = new double[n];
            for (int j = 0; j < n; j++) {
                xE[j] = centroid[j] + khi * (xR[j] - centroid[j]);
            }
            final PointValuePair expanded
                = new PointValuePair(xE, evaluationFunction.value(xE), false);

            if (comparator.compare(expanded, reflected) < 0) {
                // Accept the expansion point.
                replaceWorstPoint(expanded, comparator);
            } else {
                // Accept the reflected point.
                replaceWorstPoint(reflected, comparator);
            }
        } else {
            if (comparator.compare(reflected, worst) < 0) {
                // Perform an outside contraction.
                final double[] xC = new double[n];
                for (int j = 0; j < n; j++) {
                    xC[j] = centroid[j] + gamma * (xR[j] - centroid[j]);
                }
                final PointValuePair outContracted
                    = new PointValuePair(xC, evaluationFunction.value(xC), false);
                if (comparator.compare(outContracted, reflected) <= 0) {
                    // Accept the contraction point.
                    replaceWorstPoint(outContracted, comparator);
                    return;
                }
            } else {
                // Perform an inside contraction.
                final double[] xC = new double[n];
                for (int j = 0; j < n; j++) {
                    xC[j] = centroid[j] - gamma * (centroid[j] - xWorst[j]);
                }
                final PointValuePair inContracted
                    = new PointValuePair(xC, evaluationFunction.value(xC), false);

                if (comparator.compare(inContracted, worst) < 0) {
                    // Accept the contraction point.
                    replaceWorstPoint(inContracted, comparator);
                    return;
                }
            }

            // Perform a shrink.
            final double[] xSmallest = getPoint(0).getPointRef();
            for (int i = 1; i <= n; i++) {
                final double[] x = getPoint(i).getPoint();
                for (int j = 0; j < n; j++) {
                    x[j] = xSmallest[j] + sigma * (x[j] - xSmallest[j]);
                }
                setPoint(i, new PointValuePair(x, Double.NaN, false));
            }
            evaluate(evaluationFunction, comparator);
        }
    }
View Full Code Here

            throw new DimensionMismatchException(dimension, startPoint.length);
        }

        // Set first vertex.
        simplex = new PointValuePair[dimension + 1];
        simplex[0] = new PointValuePair(startPoint, Double.NaN);

        // Set remaining vertices.
        for (int i = 0; i < dimension; i++) {
            final double[] confI = startConfiguration[i];
            final double[] vertexI = new double[dimension];
            for (int k = 0; k < dimension; k++) {
                vertexI[k] = startPoint[k] + confI[k];
            }
            simplex[i + 1] = new PointValuePair(vertexI, Double.NaN);
        }
    }
View Full Code Here

     */
    public void evaluate(final MultivariateFunction evaluationFunction,
                         final Comparator<PointValuePair> comparator) {
        // Evaluate the objective function at all non-evaluated simplex points.
        for (int i = 0; i < simplex.length; i++) {
            final PointValuePair vertex = simplex[i];
            final double[] point = vertex.getPointRef();
            if (Double.isNaN(vertex.getValue())) {
                simplex[i] = new PointValuePair(point, evaluationFunction.value(point), false);
            }
        }

        // Sort the simplex from best to worst.
        Arrays.sort(simplex, comparator);
View Full Code Here

     */
    protected void replaceWorstPoint(PointValuePair pointValuePair,
                                     final Comparator<PointValuePair> comparator) {
        for (int i = 0; i < dimension; i++) {
            if (comparator.compare(simplex[i], pointValuePair) > 0) {
                PointValuePair tmp = simplex[i];
                simplex[i] = pointValuePair;
                pointValuePair = tmp;
            }
        }
        simplex[dimension] = pointValuePair;
View Full Code Here

    @Override
    public void iterate(final MultivariateFunction evaluationFunction,
                        final Comparator<PointValuePair> comparator) {
        // Save the original simplex.
        final PointValuePair[] original = getPoints();
        final PointValuePair best = original[0];

        // Perform a reflection step.
        final PointValuePair reflected = evaluateNewSimplex(evaluationFunction,
                                                                original, 1, comparator);
        if (comparator.compare(reflected, best) < 0) {
            // Compute the expanded simplex.
            final PointValuePair[] reflectedSimplex = getPoints();
            final PointValuePair expanded = evaluateNewSimplex(evaluationFunction,
                                                                   original, khi, comparator);
            if (comparator.compare(reflected, expanded) <= 0) {
                // Keep the reflected simplex.
                setPoints(reflectedSimplex);
            }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.optimization.PointValuePair

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.