Package org.apache.commons.math3.optim.nonlinear.vector

Examples of org.apache.commons.math3.optim.nonlinear.vector.Target


        AbstractLeastSquaresOptimizer optimizer = createOptimizer();
        PointVectorValuePair optimum
            = optimizer.optimize(new MaxEval(100),
                                 circle.getModelFunction(),
                                 circle.getModelFunctionJacobian(),
                                 new Target(new double[] { 0, 0, 0, 0, 0 }),
                                 new Weight(new double[] { 1, 1, 1, 1, 1 }),
                                 new InitialGuess(new double[] { 98.680, 47.345 }));
        Assert.assertTrue(optimizer.getEvaluations() < 10);
        double rms = optimizer.getRMS();
        Assert.assertEquals(1.768262623567235,  FastMath.sqrt(circle.getN()) * rms,  1e-10);
        Vector2D center = new Vector2D(optimum.getPointRef()[0], optimum.getPointRef()[1]);
        Assert.assertEquals(69.96016176931406, circle.getRadius(center), 1e-6);
        Assert.assertEquals(96.07590211815305, center.getX(),            1e-6);
        Assert.assertEquals(48.13516790438953, center.getY(),            1e-6);
        double[][] cov = optimizer.computeCovariances(optimum.getPoint(), 1e-14);
        Assert.assertEquals(1.839, cov[0][0], 0.001);
        Assert.assertEquals(0.731, cov[0][1], 0.001);
        Assert.assertEquals(cov[0][1], cov[1][0], 1e-14);
        Assert.assertEquals(0.786, cov[1][1], 0.001);

        // add perfect measurements and check errors are reduced
        double  r = circle.getRadius(center);
        for (double d= 0; d < 2 * FastMath.PI; d += 0.01) {
            circle.addPoint(center.getX() + r * FastMath.cos(d), center.getY() + r * FastMath.sin(d));
        }
        double[] target = new double[circle.getN()];
        Arrays.fill(target, 0);
        double[] weights = new double[circle.getN()];
        Arrays.fill(weights, 2);
        optimum = optimizer.optimize(new MaxEval(100),
                                     circle.getModelFunction(),
                                     circle.getModelFunctionJacobian(),
                                     new Target(target),
                                     new Weight(weights),
                                     new InitialGuess(new double[] { 98.680, 47.345 }));
        cov = optimizer.computeCovariances(optimum.getPoint(), 1e-14);
        Assert.assertEquals(0.0016, cov[0][0], 0.001);
        Assert.assertEquals(3.2e-7, cov[0][1], 1e-9);
View Full Code Here


        AbstractLeastSquaresOptimizer optimizer = createOptimizer();
        PointVectorValuePair optimum
            = optimizer.optimize(new MaxEval(100),
                                 circle.getModelFunction(),
                                 circle.getModelFunctionJacobian(),
                                 new Target(target),
                                 new Weight(weights),
                                 new InitialGuess(new double[] { -12, -12 }));
        Vector2D center = new Vector2D(optimum.getPointRef()[0], optimum.getPointRef()[1]);
        Assert.assertTrue(optimizer.getEvaluations() < 25);
        Assert.assertEquals( 0.043, optimizer.getRMS(), 1e-3);
View Full Code Here

        AbstractLeastSquaresOptimizer optimizer = createOptimizer();
        PointVectorValuePair optimum =
            optimizer.optimize(new MaxEval(100),
                               circle.getModelFunction(),
                               circle.getModelFunctionJacobian(),
                               new Target(target),
                               new Weight(weights),
                               new InitialGuess(new double[] { 0, 0 }));
        Assert.assertEquals(-0.1517383071957963, optimum.getPointRef()[0], 1e-6);
        Assert.assertEquals(0.2074999736353867,  optimum.getPointRef()[1], 1e-6);
        Assert.assertEquals(0.04268731682389561, optimizer.getRMS(),       1e-8);
View Full Code Here

        final StatisticalReferenceDataset.LeastSquaresProblem problem = dataset.getLeastSquaresProblem();
        final PointVectorValuePair optimum
            = optimizer.optimize(new MaxEval(100),
                                 problem.getModelFunction(),
                                 problem.getModelFunctionJacobian(),
                                 new Target(data[1]),
                                 new Weight(w),
                                 new InitialGuess(initial));

        final double[] actual = optimum.getPoint();
        for (int i = 0; i < actual.length; i++) {
View Full Code Here

            this.factors = new BlockRealMatrix(factors);
            this.target  = target;
        }

        public Target getTarget() {
            return new Target(target);
        }
View Full Code Here

            = new GaussNewtonOptimizer(new SimpleVectorValueChecker(1e-30, 1e-30));

        optimizer.optimize(new MaxEval(100),
                           circle.getModelFunction(),
                           circle.getModelFunctionJacobian(),
                           new Target(new double[] { 0, 0, 0, 0, 0 }),
                           new Weight(new double[] { 1, 1, 1, 1, 1 }),
                           new InitialGuess(new double[] { 98.680, 47.345 }));
    }
View Full Code Here

     * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @throws NotStrictlyPositiveException if {@code mean <= 0}.
     * @since 2.1
     */
    public ExponentialDistribution(double mean, double inverseCumAccuracy) {
        this(new Well19937c(), mean, inverseCumAccuracy);
    }
View Full Code Here

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
View Full Code Here

        geoMeanImpl = new StorelessUnivariateStatistic[k];
        meanImpl    = new StorelessUnivariateStatistic[k];

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
View Full Code Here

     * @param checker Convergence checker.
     */
    protected BaseOptimizer(ConvergenceChecker<PAIR> checker) {
        this.checker = checker;

        evaluations = new Incrementor(0, new MaxEvalCallback());
        iterations = new Incrementor(0, new MaxIterCallback());
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.optim.nonlinear.vector.Target

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.