Package org.apache.commons.math3.optim.nonlinear.scalar.noderiv

Examples of org.apache.commons.math3.optim.nonlinear.scalar.noderiv.NelderMeadSimplex


                                                       biQuadratic.getLower(),
                                                       biQuadratic.getUpper(),
                                                       1000.0, new double[] { 100.0, 100.0 });

        SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30);
        final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

        final PointValuePair optimum
            = optimizer.optimize(new MaxEval(300),
                                 new ObjectiveFunction(wrapped),
                                 simplex,
View Full Code Here


                                                       biQuadratic.getLower(),
                                                       biQuadratic.getUpper(),
                                                       1000.0, new double[] { 100.0, 100.0 });

        SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30);
        final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

        final PointValuePair optimum
            = optimizer.optimize(new MaxEval(300),
                                 new ObjectiveFunction(wrapped),
                                 simplex,
View Full Code Here

                                                      biQuadratic.getLower(),
                                                      biQuadratic.getUpper(),
                                                      1000.0, new double[] { 100.0, 100.0 });

        SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-11, 1.0e-20));
        final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

        final PointValuePair optimum
            = optimizer.optimize(new MaxEval(600),
                                 new ObjectiveFunction(wrapped),
                                 simplex,
View Full Code Here

                                                     biQuadratic.getLower(),
                                                     biQuadratic.getUpper(),
                                                     1000.0, new double[] { 100.0, 100.0 });

        SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30);
        final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

        final PointValuePair optimum
            = optimizer.optimize(new MaxEval(300),
                                 new ObjectiveFunction(wrapped),
                                 simplex,
View Full Code Here

                                                       biQuadratic.getLower(),
                                                       biQuadratic.getUpper(),
                                                       1000.0, new double[] { 100.0, 100.0 });

        SimplexOptimizer optimizer = new SimplexOptimizer(new SimplePointChecker<PointValuePair>(1.0e-10, 1.0e-20));
        final AbstractSimplex simplex = new NelderMeadSimplex(new double[] { 1.0, 0.5 });

        final PointValuePair optimum
            = optimizer.optimize(new MaxEval(400),
                                 new ObjectiveFunction(wrapped),
                                 simplex,
View Full Code Here

            = new MultivariateFunctionMappingAdapter(biQuadratic,
                                                     biQuadratic.getLower(),
                                                     biQuadratic.getUpper());

        SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30);
        final AbstractSimplex simplex = new NelderMeadSimplex(new double[][] {
                wrapped.boundedToUnbounded(new double[] { 1.5, 2.75 }),
                wrapped.boundedToUnbounded(new double[] { 1.5, 2.95 }),
                wrapped.boundedToUnbounded(new double[] { 1.7, 2.90 })
            });
View Full Code Here

            = new MultivariateFunctionMappingAdapter(biQuadratic,
                                                     biQuadratic.getLower(),
                                                     biQuadratic.getUpper());

        SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30);
        final AbstractSimplex simplex = new NelderMeadSimplex(new double[][] {
                wrapped.boundedToUnbounded(new double[] { 1.5, 2.75 }),
                wrapped.boundedToUnbounded(new double[] { 1.5, 2.95 }),
                wrapped.boundedToUnbounded(new double[] { 1.7, 2.90 })
            });
View Full Code Here

            = new MultivariateFunctionMappingAdapter(biQuadratic,
                                                     biQuadratic.getLower(),
                                                     biQuadratic.getUpper());

        SimplexOptimizer optimizer = new SimplexOptimizer(1e-10, 1e-30);
        final AbstractSimplex simplex = new NelderMeadSimplex(new double[][] {
                wrapped.boundedToUnbounded(new double[] { 1.5, 2.75 }),
                wrapped.boundedToUnbounded(new double[] { 1.5, 2.95 }),
                wrapped.boundedToUnbounded(new double[] { 1.7, 2.90 })
            });
View Full Code Here

            = new MultivariateFunctionMappingAdapter(biQuadratic,
                                                     biQuadratic.getLower(),
                                                     biQuadratic.getUpper());

        SimplexOptimizer optimizer = new SimplexOptimizer(1e-13, 1e-30);
        final AbstractSimplex simplex = new NelderMeadSimplex(new double[][] {
                wrapped.boundedToUnbounded(new double[] { 1.5, 2.75 }),
                wrapped.boundedToUnbounded(new double[] { 1.5, 2.95 }),
                wrapped.boundedToUnbounded(new double[] { 1.7, 2.90 })
            });
View Full Code Here

     * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @throws NotStrictlyPositiveException if {@code mean <= 0}.
     * @since 2.1
     */
    public ExponentialDistribution(double mean, double inverseCumAccuracy) {
        this(new Well19937c(), mean, inverseCumAccuracy);
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.optim.nonlinear.scalar.noderiv.NelderMeadSimplex

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.