Package org.apache.commons.math3.ode.nonstiff

Examples of org.apache.commons.math3.ode.nonstiff.DormandPrince853Integrator


     * @param matrix matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(final RealMatrix matrix) {
        int nVars = matrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            for (int j = 0; j < i; j++) {
                double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
                outMatrix.setEntry(i, j, corr);
                outMatrix.setEntry(j, i, corr);
            }
            outMatrix.setEntry(i, i, 1d);
        }
        return outMatrix;
    }
View Full Code Here


        // solve the rectangular system in the least square sense
        // to get the best estimate of the Nordsieck vector [s2 ... sk]
        QRDecomposition decomposition;
        decomposition = new QRDecomposition(new Array2DRowRealMatrix(a, false));
        RealMatrix x = decomposition.getSolver().solve(new Array2DRowRealMatrix(b, false));
        return new Array2DRowRealMatrix(x.getData(), false);
    }
View Full Code Here

    for (SiteWithPolynomial site : sites) {
     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
        vector.setEntry(row, nearSite.pos.y);
      }
     
      QRDecomposition qr = new QRDecomposition(matrix);
      RealVector solution = qr.getSolver().solve(vector);
       
      double[] coeffs = solution.toArray();
     
      for (double coeff : coeffs) {
        if (coeff > 10e3) {
          continue calculatePolynomials;
        }
View Full Code Here

                return Double.compare(weightedResidual(o1),
                                      weightedResidual(o2));
            }

            private double weightedResidual(final PointVectorValuePair pv) {
                final RealVector v = new ArrayRealVector(pv.getValueRef(), false);
                final RealVector r = target.subtract(v);
                return r.dotProduct(weight.operate(r));
            }
        };
    }
View Full Code Here

            throw new NumberIsTooSmallException(
                  LocalizedFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS,
                  nSteps, 2, true);
        }

        starter = new DormandPrince853Integrator(minStep, maxStep,
                                                 scalAbsoluteTolerance,
                                                 scalRelativeTolerance);
        this.nSteps = nSteps;

        exp = -1.0 / order;
View Full Code Here

                                  final int order,
                                  final double minStep, final double maxStep,
                                  final double[] vecAbsoluteTolerance,
                                  final double[] vecRelativeTolerance) {
        super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
        starter = new DormandPrince853Integrator(minStep, maxStep,
                                                 vecAbsoluteTolerance,
                                                 vecRelativeTolerance);
        this.nSteps = nSteps;

        exp = -1.0 / order;
View Full Code Here

          };

      // integrate backward from &pi; to 0;
      ContinuousOutputModel cm1 = new ContinuousOutputModel();
      FirstOrderIntegrator integ1 =
          new DormandPrince853Integrator(0, 1.0, 1.0e-8, 1.0e-8);
      integ1.addStepHandler(cm1);
      integ1.integrate(problem, FastMath.PI, new double[] { -1.0, 0.0 },
                       0, new double[2]);

      // integrate backward from 2&pi; to &pi;
      ContinuousOutputModel cm2 = new ContinuousOutputModel();
      FirstOrderIntegrator integ2 =
          new DormandPrince853Integrator(0, 0.1, 1.0e-12, 1.0e-12);
      integ2.addStepHandler(cm2);
      integ2.integrate(problem, 2.0 * FastMath.PI, new double[] { 1.0, 0.0 },
                       FastMath.PI, new double[2]);

      // merge the two half circles
      ContinuousOutputModel cm = new ContinuousOutputModel();
      cm.append(cm2);
View Full Code Here

            throw new MathIllegalArgumentException(
                  LocalizedFormats.INTEGRATION_METHOD_NEEDS_AT_LEAST_TWO_PREVIOUS_POINTS,
                  name);
        }

        starter = new DormandPrince853Integrator(minStep, maxStep,
                                                 scalAbsoluteTolerance,
                                                 scalRelativeTolerance);
        this.nSteps = nSteps;

        exp = -1.0 / order;
View Full Code Here

                                  final int order,
                                  final double minStep, final double maxStep,
                                  final double[] vecAbsoluteTolerance,
                                  final double[] vecRelativeTolerance) {
        super(name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance);
        starter = new DormandPrince853Integrator(minStep, maxStep,
                                                 vecAbsoluteTolerance,
                                                 vecRelativeTolerance);
        this.nSteps = nSteps;

        exp = -1.0 / order;
View Full Code Here

        throws DimensionMismatchException, NumberIsTooSmallException,
               MaxCountExceededException, NoBracketingException {
        double e = 1e-15;
        FirstOrderIntegrator integrator;
        integrator = (integratorType == 1)
                     ? new DormandPrince853Integrator(e, 100.0, 1e-7, 1e-7)
                     : new GraggBulirschStoerIntegrator(e, 100.0, 1e-7, 1e-7);
        PegasusSolver rootSolver = new PegasusSolver(e, e);
        integrator.addEventHandler(new Event(), 0.1, e, 1000, rootSolver);
        double t0 = 6.0;
        double tEnd = 10.0;
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.ode.nonstiff.DormandPrince853Integrator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.