Package org.apache.commons.math3.ode

Examples of org.apache.commons.math3.ode.TestProblem3


  @Test
  public void serialization()
    throws IOException, ClassNotFoundException {

    TestProblem3 pb = new TestProblem3(0.9);
    double step = (pb.getFinalTime() - pb.getInitialTime()) * 0.0003;
    ThreeEighthesIntegrator integ = new ThreeEighthesIntegrator(step);
    integ.addStepHandler(new ContinuousOutputModel());
    integ.integrate(pb,
                    pb.getInitialTime(), pb.getInitialState(),
                    pb.getFinalTime(), new double[pb.getDimension()]);

    ByteArrayOutputStream bos = new ByteArrayOutputStream();
    ObjectOutputStream    oos = new ObjectOutputStream(bos);
    for (StepHandler handler : integ.getStepHandlers()) {
        oos.writeObject(handler);
    }

    Assert.assertTrue(bos.size () > 880000);
    Assert.assertTrue(bos.size () < 900000);

    ByteArrayInputStream  bis = new ByteArrayInputStream(bos.toByteArray());
    ObjectInputStream     ois = new ObjectInputStream(bis);
    ContinuousOutputModel cm  = (ContinuousOutputModel) ois.readObject();

    Random random = new Random(347588535632l);
    double maxError = 0.0;
    for (int i = 0; i < 1000; ++i) {
      double r = random.nextDouble();
      double time = r * pb.getInitialTime() + (1.0 - r) * pb.getFinalTime();
      cm.setInterpolatedTime(time);
      double[] interpolatedY = cm.getInterpolatedState ();
      double[] theoreticalY  = pb.computeTheoreticalState(time);
      double dx = interpolatedY[0] - theoreticalY[0];
      double dy = interpolatedY[1] - theoreticalY[1];
      double error = dx * dx + dy * dy;
      if (error > maxError) {
        maxError = error;
View Full Code Here


  @Test
  public void testKepler()
    {

    final TestProblem3 pb  = new TestProblem3(0.9);
    double minStep = 0;
    double maxStep = pb.getFinalTime() - pb.getInitialTime();
    double scalAbsoluteTolerance = 1.0e-8;
    double scalRelativeTolerance = scalAbsoluteTolerance;

    FirstOrderIntegrator integ = new DormandPrince853Integrator(minStep, maxStep,
                                                                scalAbsoluteTolerance,
                                                                scalRelativeTolerance);
    integ.addStepHandler(new KeplerHandler(pb));
    integ.integrate(pb,
                    pb.getInitialTime(), pb.getInitialState(),
                    pb.getFinalTime(), new double[pb.getDimension()]);

    Assert.assertEquals(integ.getEvaluations(), pb.getCalls());
    Assert.assertTrue(pb.getCalls() < 3300);

  }
View Full Code Here

  @Test
  public void testVariableSteps()
    {

    final TestProblem3 pb  = new TestProblem3(0.9);
    double minStep = 0;
    double maxStep = pb.getFinalTime() - pb.getInitialTime();
    double scalAbsoluteTolerance = 1.0e-8;
    double scalRelativeTolerance = scalAbsoluteTolerance;

    FirstOrderIntegrator integ = new DormandPrince853Integrator(minStep, maxStep,
                                                               scalAbsoluteTolerance,
                                                               scalRelativeTolerance);
    integ.addStepHandler(new VariableHandler());
    double stopTime = integ.integrate(pb,
                                      pb.getInitialTime(), pb.getInitialState(),
                                      pb.getFinalTime(), new double[pb.getDimension()]);
    Assert.assertEquals(pb.getFinalTime(), stopTime, 1.0e-10);
    Assert.assertEquals("Dormand-Prince 8 (5, 3)", integ.getName());
  }
View Full Code Here

public class GraggBulirschStoerStepInterpolatorTest {

  @Test
  public void derivativesConsistency()
  {
    TestProblem3 pb = new TestProblem3(0.9);
    double minStep   = 0;
    double maxStep   = pb.getFinalTime() - pb.getInitialTime();
    double absTolerance = 1.0e-8;
    double relTolerance = 1.0e-8;

    GraggBulirschStoerIntegrator integ =
      new GraggBulirschStoerIntegrator(minStep, maxStep,
View Full Code Here

  @Test
  public void serialization()
    throws IOException, ClassNotFoundException {

    TestProblem3 pb  = new TestProblem3(0.9);
    double minStep   = 0;
    double maxStep   = pb.getFinalTime() - pb.getInitialTime();
    double absTolerance = 1.0e-8;
    double relTolerance = 1.0e-8;

    GraggBulirschStoerIntegrator integ =
      new GraggBulirschStoerIntegrator(minStep, maxStep,
                                       absTolerance, relTolerance);
    integ.addStepHandler(new ContinuousOutputModel());
    integ.integrate(pb,
                    pb.getInitialTime(), pb.getInitialState(),
                    pb.getFinalTime(), new double[pb.getDimension()]);

    ByteArrayOutputStream bos = new ByteArrayOutputStream();
    ObjectOutputStream    oos = new ObjectOutputStream(bos);
    for (StepHandler handler : integ.getStepHandlers()) {
        oos.writeObject(handler);
    }

    Assert.assertTrue(bos.size () > 35000);
    Assert.assertTrue(bos.size () < 36000);

    ByteArrayInputStream  bis = new ByteArrayInputStream(bos.toByteArray());
    ObjectInputStream     ois = new ObjectInputStream(bis);
    ContinuousOutputModel cm  = (ContinuousOutputModel) ois.readObject();

    Random random = new Random(347588535632l);
    double maxError = 0.0;
    for (int i = 0; i < 1000; ++i) {
      double r = random.nextDouble();
      double time = r * pb.getInitialTime() + (1.0 - r) * pb.getFinalTime();
      cm.setInterpolatedTime(time);
      double[] interpolatedY = cm.getInterpolatedState ();
      double[] theoreticalY  = pb.computeTheoreticalState(time);
      double dx = interpolatedY[0] - theoreticalY[0];
      double dy = interpolatedY[1] - theoreticalY[1];
      double error = dx * dx + dy * dy;
      if (error > maxError) {
        maxError = error;
View Full Code Here

  }

  @Test
  public void checklone()
  {
    TestProblem3 pb = new TestProblem3(0.9);
    double minStep = 0;
    double maxStep = pb.getFinalTime() - pb.getInitialTime();
    double scalAbsoluteTolerance = 1.0e-8;
    double scalRelativeTolerance = scalAbsoluteTolerance;
    GraggBulirschStoerIntegrator integ = new GraggBulirschStoerIntegrator(minStep, maxStep,
                                                                          scalAbsoluteTolerance,
                                                                          scalRelativeTolerance);
    integ.addStepHandler(new StepHandler() {
        public void handleStep(StepInterpolator interpolator, boolean isLast) {
            StepInterpolator cloned = interpolator.copy();
            double tA = cloned.getPreviousTime();
            double tB = cloned.getCurrentTime();
            double halfStep = FastMath.abs(tB - tA) / 2;
            Assert.assertEquals(interpolator.getPreviousTime(), tA, 1.0e-12);
            Assert.assertEquals(interpolator.getCurrentTime(), tB, 1.0e-12);
            for (int i = 0; i < 10; ++i) {
                double t = (i * tB + (9 - i) * tA) / 9;
                interpolator.setInterpolatedTime(t);
                Assert.assertTrue(FastMath.abs(cloned.getInterpolatedTime() - t) > (halfStep / 10));
                cloned.setInterpolatedTime(t);
                Assert.assertEquals(t, cloned.getInterpolatedTime(), 1.0e-12);
                double[] referenceState = interpolator.getInterpolatedState();
                double[] cloneState     = cloned.getInterpolatedState();
                for (int j = 0; j < referenceState.length; ++j) {
                    Assert.assertEquals(referenceState[j], cloneState[j], 1.0e-12);
                }
            }
        }
        public void init(double t0, double[] y0, double t) {
        }
    });
    integ.integrate(pb,
            pb.getInitialTime(), pb.getInitialState(),
            pb.getFinalTime(), new double[pb.getDimension()]);

  }
View Full Code Here

  }

  @Test
  public void derivativesConsistency()
  {
    TestProblem3 pb = new TestProblem3();
    double step = (pb.getFinalTime() - pb.getInitialTime()) * 0.001;
    EulerIntegrator integ = new EulerIntegrator(step);
    StepInterpolatorTestUtils.checkDerivativesConsistency(integ, pb, 1.0e-10);
  }
View Full Code Here

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
        }

        covarianceImpl =
View Full Code Here

        geoMeanImpl = new StorelessUnivariateStatistic[k];
        meanImpl    = new StorelessUnivariateStatistic[k];

        for (int i = 0; i < k; ++i) {
            sumImpl[i]     = new Sum();
            sumSqImpl[i]   = new SumOfSquares();
            minImpl[i]     = new Min();
            maxImpl[i]     = new Max();
            sumLogImpl[i= new SumOfLogs();
            geoMeanImpl[i] = new GeometricMean();
            meanImpl[i]    = new Mean();
View Full Code Here

     * @param checker Convergence checker.
     */
    protected BaseOptimizer(ConvergenceChecker<PAIR> checker) {
        this.checker = checker;

        evaluations = new Incrementor(0, new MaxEvalCallback());
        iterations = new Incrementor(0, new MaxIterCallback());
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.ode.TestProblem3

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.