Package org.apache.commons.math3.ode

Examples of org.apache.commons.math3.ode.ContinuousOutputModel


     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
View Full Code Here


     * @param matrix matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(final RealMatrix matrix) {
        int nVars = matrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            for (int j = 0; j < i; j++) {
                double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
                outMatrix.setEntry(i, j, corr);
                outMatrix.setEntry(j, i, corr);
            }
            outMatrix.setEntry(i, i, 1d);
        }
        return outMatrix;
    }
View Full Code Here

        // solve the rectangular system in the least square sense
        // to get the best estimate of the Nordsieck vector [s2 ... sk]
        QRDecomposition decomposition;
        decomposition = new QRDecomposition(new Array2DRowRealMatrix(a, false));
        RealMatrix x = decomposition.getSolver().solve(new Array2DRowRealMatrix(b, false));
        return new Array2DRowRealMatrix(x.getData(), false);
    }
View Full Code Here

    for (SiteWithPolynomial site : sites) {
     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
        vector.setEntry(row, nearSite.pos.y);
      }
     
      QRDecomposition qr = new QRDecomposition(matrix);
      RealVector solution = qr.getSolver().solve(vector);
       
      double[] coeffs = solution.toArray();
     
      for (double coeff : coeffs) {
        if (coeff > 10e3) {
          continue calculatePolynomials;
        }
View Full Code Here

                return Double.compare(weightedResidual(o1),
                                      weightedResidual(o2));
            }

            private double weightedResidual(final PointVectorValuePair pv) {
                final RealVector v = new ArrayRealVector(pv.getValueRef(), false);
                final RealVector r = target.subtract(v);
                return r.dotProduct(weight.operate(r));
            }
        };
    }
View Full Code Here

            MaxCountExceededException, NoBracketingException  {

        TestProblem3 pb = new TestProblem3(0.9);
        double step = (pb.getFinalTime() - pb.getInitialTime()) * 0.0003;
        LutherIntegrator integ = new LutherIntegrator(step);
        integ.addStepHandler(new ContinuousOutputModel());
        integ.integrate(pb,
                        pb.getInitialTime(), pb.getInitialState(),
                        pb.getFinalTime(), new double[pb.getDimension()]);

        ByteArrayOutputStream bos = new ByteArrayOutputStream();
        ObjectOutputStream    oos = new ObjectOutputStream(bos);
        for (StepHandler handler : integ.getStepHandlers()) {
            oos.writeObject(handler);
        }

        Assert.assertTrue(bos.size() > 1200000);
        Assert.assertTrue(bos.size() < 1250000);

        ByteArrayInputStream  bis = new ByteArrayInputStream(bos.toByteArray());
        ObjectInputStream     ois = new ObjectInputStream(bis);
        ContinuousOutputModel cm  = (ContinuousOutputModel) ois.readObject();

        Random random = new Random(347588535632l);
        double maxError = 0.0;
        for (int i = 0; i < 1000; ++i) {
            double r = random.nextDouble();
            double time = r * pb.getInitialTime() + (1.0 - r) * pb.getFinalTime();
            cm.setInterpolatedTime(time);
            double[] interpolatedY = cm.getInterpolatedState ();
            double[] theoreticalY  = pb.computeTheoreticalState(time);
            double dx = interpolatedY[0] - theoreticalY[0];
            double dy = interpolatedY[1] - theoreticalY[1];
            double error = dx * dx + dy * dy;
            if (error > maxError) {
View Full Code Here

           NumberIsTooSmallException, DimensionMismatchException,
           MaxCountExceededException, NoBracketingException {

        TestProblem1 pb = new TestProblem1();
        AdamsBashforthIntegrator integ = new AdamsBashforthIntegrator(4, 0.0, 1.0, 1.0e-10, 1.0e-10);
        integ.addStepHandler(new ContinuousOutputModel());
        integ.integrate(pb,
                        pb.getInitialTime(), pb.getInitialState(),
                        pb.getFinalTime(), new double[pb.getDimension()]);

        ByteArrayOutputStream bos = new ByteArrayOutputStream();
        ObjectOutputStream    oos = new ObjectOutputStream(bos);
        for (StepHandler handler : integ.getStepHandlers()) {
            oos.writeObject(handler);
        }

        Assert.assertTrue(bos.size () 25500);
        Assert.assertTrue(bos.size () 26500);

        ByteArrayInputStream  bis = new ByteArrayInputStream(bos.toByteArray());
        ObjectInputStream     ois = new ObjectInputStream(bis);
        ContinuousOutputModel cm  = (ContinuousOutputModel) ois.readObject();

        Random random = new Random(347588535632l);
        double maxError = 0.0;
        for (int i = 0; i < 1000; ++i) {
            double r = random.nextDouble();
            double time = r * pb.getInitialTime() + (1.0 - r) * pb.getFinalTime();
            cm.setInterpolatedTime(time);
            double[] interpolatedY = cm.getInterpolatedState ();
            double[] theoreticalY  = pb.computeTheoreticalState(time);
            double dx = interpolatedY[0] - theoreticalY[0];
            double dy = interpolatedY[1] - theoreticalY[1];
            double error = dx * dx + dy * dy;
            if (error > maxError) {
View Full Code Here

           MaxCountExceededException, NoBracketingException {

    TestProblem1 pb = new TestProblem1();
    double step = (pb.getFinalTime() - pb.getInitialTime()) * 0.001;
    EulerIntegrator integ = new EulerIntegrator(step);
    integ.addStepHandler(new ContinuousOutputModel());
    integ.integrate(pb,
                    pb.getInitialTime(), pb.getInitialState(),
                    pb.getFinalTime(), new double[pb.getDimension()]);

    ByteArrayOutputStream bos = new ByteArrayOutputStream();
    ObjectOutputStream    oos = new ObjectOutputStream(bos);
    for (StepHandler handler : integ.getStepHandlers()) {
        oos.writeObject(handler);
    }

    ByteArrayInputStream  bis = new ByteArrayInputStream(bos.toByteArray());
    ObjectInputStream     ois = new ObjectInputStream(bis);
    ContinuousOutputModel cm  = (ContinuousOutputModel) ois.readObject();

    Random random = new Random(347588535632l);
    double maxError = 0.0;
    for (int i = 0; i < 1000; ++i) {
      double r = random.nextDouble();
      double time = r * pb.getInitialTime() + (1.0 - r) * pb.getFinalTime();
      cm.setInterpolatedTime(time);
      double[] interpolatedY = cm.getInterpolatedState ();
      double[] theoreticalY  = pb.computeTheoreticalState(time);
      double dx = interpolatedY[0] - theoreticalY[0];
      double dy = interpolatedY[1] - theoreticalY[1];
      double error = dx * dx + dy * dy;
      if (error > maxError) {
View Full Code Here

    double scalAbsoluteTolerance = 1.0e-8;
    double scalRelativeTolerance = scalAbsoluteTolerance;
    DormandPrince54Integrator integ = new DormandPrince54Integrator(minStep, maxStep,
                                                                    scalAbsoluteTolerance,
                                                                    scalRelativeTolerance);
    integ.addStepHandler(new ContinuousOutputModel());
    integ.integrate(pb,
                    pb.getInitialTime(), pb.getInitialState(),
                    pb.getFinalTime(), new double[pb.getDimension()]);

    ByteArrayOutputStream bos = new ByteArrayOutputStream();
    ObjectOutputStream    oos = new ObjectOutputStream(bos);
    for (StepHandler handler : integ.getStepHandlers()) {
        oos.writeObject(handler);
    }

    Assert.assertTrue(bos.size () > 135000);
    Assert.assertTrue(bos.size () < 145000);

    ByteArrayInputStream  bis = new ByteArrayInputStream(bos.toByteArray());
    ObjectInputStream     ois = new ObjectInputStream(bis);
    ContinuousOutputModel cm  = (ContinuousOutputModel) ois.readObject();

    Random random = new Random(347588535632l);
    double maxError = 0.0;
    for (int i = 0; i < 1000; ++i) {
      double r = random.nextDouble();
      double time = r * pb.getInitialTime() + (1.0 - r) * pb.getFinalTime();
      cm.setInterpolatedTime(time);
      double[] interpolatedY = cm.getInterpolatedState ();
      double[] theoreticalY  = pb.computeTheoreticalState(time);
      double dx = interpolatedY[0] - theoreticalY[0];
      double dy = interpolatedY[1] - theoreticalY[1];
      double error = dx * dx + dy * dy;
      if (error > maxError) {
View Full Code Here

    double relTolerance = 1.0e-8;

    GraggBulirschStoerIntegrator integ =
      new GraggBulirschStoerIntegrator(minStep, maxStep,
                                       absTolerance, relTolerance);
    integ.addStepHandler(new ContinuousOutputModel());
    integ.integrate(pb,
                    pb.getInitialTime(), pb.getInitialState(),
                    pb.getFinalTime(), new double[pb.getDimension()]);

    ByteArrayOutputStream bos = new ByteArrayOutputStream();
    ObjectOutputStream    oos = new ObjectOutputStream(bos);
    for (StepHandler handler : integ.getStepHandlers()) {
        oos.writeObject(handler);
    }

    Assert.assertTrue(bos.size () > 35000);
    Assert.assertTrue(bos.size () < 36000);

    ByteArrayInputStream  bis = new ByteArrayInputStream(bos.toByteArray());
    ObjectInputStream     ois = new ObjectInputStream(bis);
    ContinuousOutputModel cm  = (ContinuousOutputModel) ois.readObject();

    Random random = new Random(347588535632l);
    double maxError = 0.0;
    for (int i = 0; i < 1000; ++i) {
      double r = random.nextDouble();
      double time = r * pb.getInitialTime() + (1.0 - r) * pb.getFinalTime();
      cm.setInterpolatedTime(time);
      double[] interpolatedY = cm.getInterpolatedState ();
      double[] theoreticalY  = pb.computeTheoreticalState(time);
      double dx = interpolatedY[0] - theoreticalY[0];
      double dy = interpolatedY[1] - theoreticalY[1];
      double error = dx * dx + dy * dy;
      if (error > maxError) {
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.ode.ContinuousOutputModel

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.