Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.SymmLQ$State


        /**
         * {@inheritDoc}
         * @throws TooManyEvaluationsException.
         */
        public void trigger(int max) {
            throw new TooManyEvaluationsException(max);
        }
View Full Code Here


        /**
         * {@inheritDoc}
         * @throws TooManyIterationsException.
         */
        public void trigger(int max) {
            throw new TooManyIterationsException(max);
        }
View Full Code Here

                                              double threshold) {
        super(wrong, threshold, false);
        this.index = index;
        this.threshold = threshold;

        final ExceptionContext context = getContext();
        context.addMessage(LocalizedFormats.NOT_POSITIVE_DEFINITE_MATRIX);
        context.addMessage(LocalizedFormats.ARRAY_ELEMENT, wrong, index);
    }
View Full Code Here

            final double t = x.dotProduct(z);
            final double epsa = (s + MACH_PREC) * CBRT_MACH_PREC;
            if (FastMath.abs(s - t) > epsa) {
                final NonSelfAdjointOperatorException e;
                e = new NonSelfAdjointOperatorException();
                final ExceptionContext context = e.getContext();
                context.setValue(SymmLQ.OPERATOR, l);
                context.setValue(SymmLQ.VECTOR1, x);
                context.setValue(SymmLQ.VECTOR2, y);
                context.setValue(SymmLQ.THRESHOLD, Double.valueOf(epsa));
                throw e;
            }
        }
View Full Code Here

         */
        private static void throwNPDLOException(final RealLinearOperator l,
            final RealVector v) throws NonPositiveDefiniteOperatorException {
            final NonPositiveDefiniteOperatorException e;
            e = new NonPositiveDefiniteOperatorException();
            final ExceptionContext context = e.getContext();
            context.setValue(OPERATOR, l);
            context.setValue(VECTOR, v);
            throw e;
        }
View Full Code Here

            // build the P matrix elements from Taylor series formulas
            final BigFraction[] pI = pData[i];
            final int factor = -(i + 1);
            int aj = factor;
            for (int j = 0; j < pI.length; ++j) {
                pI[j] = new BigFraction(aj * (j + 2));
                aj *= factor;
            }
        }

        return new Array2DRowFieldMatrix<BigFraction>(pData, false);
View Full Code Here

     
      List<SiteWithPolynomial> nearestSites =
          nearestSiteMap.get(site);
     
      RealVector vector = new ArrayRealVector(SITES_FOR_APPROX);
      RealMatrix matrix = new Array2DRowRealMatrix(
          SITES_FOR_APPROX, DefaultPolynomial.NUM_COEFFS);
     
      for (int row = 0; row < SITES_FOR_APPROX; row++) {
        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
View Full Code Here

        }

        // solve the rectangular system in the least square sense
        // to get the best estimate of the Nordsieck vector [s2 ... sk]
        QRDecomposition decomposition;
        decomposition = new QRDecomposition(new Array2DRowRealMatrix(a, false));
        RealMatrix x = decomposition.getSolver().solve(new Array2DRowRealMatrix(b, false));
        return new Array2DRowRealMatrix(x.getData(), false);
    }
View Full Code Here

            // update Nordsieck vector
            final double[] predictedScaled = new double[y0.length];
            for (int j = 0; j < y0.length; ++j) {
                predictedScaled[j] = stepSize * yDot[j];
            }
            final Array2DRowRealMatrix nordsieckTmp = updateHighOrderDerivativesPhase1(nordsieck);
            updateHighOrderDerivativesPhase2(scaled, predictedScaled, nordsieckTmp);
            interpolator.reinitialize(stepEnd, stepSize, predictedScaled, nordsieckTmp);

            // discrete events handling
            interpolator.storeTime(stepEnd);
View Full Code Here

     * @param residuals Residuals.
     * @return the cost.
     * @see #computeResiduals(double[])
     */
    protected double computeCost(double[] residuals) {
        final ArrayRealVector r = new ArrayRealVector(residuals);
        return FastMath.sqrt(r.dotProduct(getWeight().operate(r)));
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.SymmLQ$State

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.