Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.SymmLQ$State


                // tests for termination and stringent tolerances
                if (FastMath.abs(actRed) <= TWO_EPS &&
                    preRed <= TWO_EPS &&
                    ratio <= 2.0) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE,
                                                   costRelativeTolerance);
                } else if (delta <= TWO_EPS * xNorm) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE,
                                                   parRelativeTolerance);
                } else if (maxCosine <= TWO_EPS) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE,
                                                   orthoTolerance);
                }
            }
        }
    }
View Full Code Here


                for (int j = k; j < nR; ++j) {
                    double aki = weightedJacobian[j][permutation[i]];
                    norm2 += aki * aki;
                }
                if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
                    throw new ConvergenceException(LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
                                                   nR, nC);
                }
                if (norm2 > ak2) {
                    nextColumn = i;
                    ak2        = norm2;
View Full Code Here

                }

                // tests for termination and stringent tolerances
                // (2.2204e-16 is the machine epsilon for IEEE754)
                if ((FastMath.abs(actRed) <= 2.2204e-16) && (preRed <= 2.2204e-16) && (ratio <= 2.0)) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE,
                                                   costRelativeTolerance);
                } else if (delta <= 2.2204e-16 * xNorm) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE,
                                                   parRelativeTolerance);
                } else if (maxCosine <= 2.2204e-16)  {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE,
                                                   orthoTolerance);
                }
            }
        }
    }
View Full Code Here

                for (int j = k; j < nR; ++j) {
                    double aki = weightedJacobian[j][permutation[i]];
                    norm2 += aki * aki;
                }
                if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
                    throw new ConvergenceException(LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
                                                   nR, nC);
                }
                if (norm2 > ak2) {
                    nextColumn = i;
                    ak2        = norm2;
View Full Code Here

     * length.
     */
    protected double[] computeResiduals(double[] objectiveValue) {
        final double[] target = getTarget();
        if (objectiveValue.length != target.length) {
            throw new DimensionMismatchException(target.length,
                                                 objectiveValue.length);
        }

        final double[] residuals = new double[target.length];
        for (int i = 0; i < target.length; i++) {
View Full Code Here

        /** {@inheritDoc} */
        public RealVector solve(final RealVector b) {
            final int m = lTData.length;
            if (b.getDimension() != m) {
                throw new DimensionMismatchException(b.getDimension(), m);
            }

            final double[] x = b.toArray();

            // Solve LY = b
View Full Code Here

        /** {@inheritDoc} */
        public RealMatrix solve(RealMatrix b) {
            final int m = lTData.length;
            if (b.getRowDimension() != m) {
                throw new DimensionMismatchException(b.getRowDimension(), m);
            }

            final int nColB = b.getColumnDimension();
            final double[][] x = b.getData();

View Full Code Here

     */
    public double correlation(final double[] xArray, final double[] yArray)
            throws DimensionMismatchException {

        if (xArray.length != yArray.length) {
            throw new DimensionMismatchException(xArray.length, yArray.length);
        }

        final int n = xArray.length;
        final long numPairs = sum(n - 1);

View Full Code Here

     * @throws DimensionMismatchException if {@link #target} and
     * {@link #weightMatrix} have inconsistent dimensions.
     */
    private void checkParameters() {
        if (target.length != weightMatrix.getColumnDimension()) {
            throw new DimensionMismatchException(target.length,
                                                 weightMatrix.getColumnDimension());
        }
    }
View Full Code Here

    public void increment(final double[] data)
        throws DimensionMismatchException {

        int length = data.length;
        if (length != dimension) {
            throw new DimensionMismatchException(length, dimension);
        }

        // only update the upper triangular part of the covariance matrix
        // as only these parts are actually stored
        for (int i = 0; i < length; i++){
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.SymmLQ$State

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.