Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.RealVector$Entry


                    }
                    hs.setEntry(i, hs.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(j));
                    ih++;
                }
            }
            final RealVector tmp = interpolationPoints.operate(s).ebeMultiply(modelSecondDerivativesParameters);
            for (int k = 0; k < npt; k++) {
                if (modelSecondDerivativesParameters.getEntry(k) != ZERO) {
                    for (int i = 0; i < n; i++) {
                        hs.setEntry(i, hs.getEntry(i) + tmp.getEntry(k) * interpolationPoints.getEntry(k, i));
                    }
                }
            }
            if (crvmin != ZERO) {
                state = 50; break;
View Full Code Here


    /**
     * @param point Interpolation point.
     * @return the interpolated value.
     */
    public double value(double[] point) {
        final RealVector p = new ArrayRealVector(point);

        // Reset.
        for (MicrosphereSurfaceElement md : microsphere) {
            md.reset();
        }

        // Compute contribution of each sample points to the microsphere elements illumination
        for (Map.Entry<RealVector, Double> sd : samples.entrySet()) {

            // Vector between interpolation point and current sample point.
            final RealVector diff = sd.getKey().subtract(p);
            final double diffNorm = diff.getNorm();

            if (FastMath.abs(diffNorm) < FastMath.ulp(1d)) {
                // No need to interpolate, as the interpolation point is
                // actually (very close to) one of the sampled points.
                return sd.getValue();
View Full Code Here

        if (getNumObjectiveFunctions() == 2) {
            matrix.setEntry(0, 0, -1);
        }
        int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1;
        matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1);
        RealVector objectiveCoefficients =
            maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients();
        copyArray(objectiveCoefficients.toArray(), matrix.getDataRef()[zIndex]);
        matrix.setEntry(zIndex, width - 1,
            maximize ? f.getConstantTerm() : -1 * f.getConstantTerm());

        if (!restrictToNonNegative) {
            matrix.setEntry(zIndex, getSlackVariableOffset() - 1,
View Full Code Here

        if (getNumObjectiveFunctions() == 2) {
            matrix.setEntry(0, 0, -1);
        }
        int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1;
        matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1);
        RealVector objectiveCoefficients =
            maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients();
        copyArray(objectiveCoefficients.toArray(), matrix.getDataRef()[zIndex]);
        matrix.setEntry(zIndex, width - 1,
            maximize ? f.getConstantTerm() : -1 * f.getConstantTerm());

        if (!restrictToNonNegative) {
            matrix.setEntry(zIndex, getSlackVariableOffset() - 1,
View Full Code Here

        // no control input
        RealMatrix B = null;
        // H = [ 1 ]
        RealMatrix H = new Array2DRowRealMatrix(new double[] { 1d });
        // x = [ 10 ]
        RealVector x = new ArrayRealVector(new double[] { constantValue });
        // Q = [ 1e-5 ]
        RealMatrix Q = new Array2DRowRealMatrix(new double[] { processNoise });
        // R = [ 0.1 ]
        RealMatrix R = new Array2DRowRealMatrix(new double[] { measurementNoise });

        ProcessModel pm
            = new DefaultProcessModel(A, B, Q,
                                      new ArrayRealVector(new double[] { constantValue }), null);
        MeasurementModel mm = new DefaultMeasurementModel(H, R);
        KalmanFilter filter = new KalmanFilter(pm, mm);

        Assert.assertEquals(1, filter.getMeasurementDimension());
        Assert.assertEquals(1, filter.getStateDimension());

        assertMatrixEquals(Q.getData(), filter.getErrorCovariance());

        // check the initial state
        double[] expectedInitialState = new double[] { constantValue };
        assertVectorEquals(expectedInitialState, filter.getStateEstimation());

        RealVector pNoise = new ArrayRealVector(1);
        RealVector mNoise = new ArrayRealVector(1);

        RandomGenerator rand = new JDKRandomGenerator();
        // iterate 60 steps
        for (int i = 0; i < 60; i++) {
            filter.predict();

            // Simulate the process
            pNoise.setEntry(0, processNoise * rand.nextGaussian());

            // x = A * x + p_noise
            x = A.operate(x).add(pNoise);

            // Simulate the measurement
            mNoise.setEntry(0, measurementNoise * rand.nextGaussian());

            // z = H * x + m_noise
            RealVector z = H.operate(x).add(mNoise);

            filter.correct(z);

            // state estimate shouldn't be larger than measurement noise
            double diff = Math.abs(constantValue - filter.getStateEstimation()[0]);
View Full Code Here

        // H = [ 1 0 ]
        RealMatrix H = new Array2DRowRealMatrix(new double[][] { { 1d, 0d } });

        // x = [ 0 0 ]
        RealVector x = new ArrayRealVector(new double[] { 0, 0 });

        RealMatrix tmp = new Array2DRowRealMatrix(
                new double[][] { { Math.pow(dt, 4d) / 4d, Math.pow(dt, 3d) / 2d },
                                 { Math.pow(dt, 3d) / 2d, Math.pow(dt, 2d) } });

        // Q = [ dt^4/4 dt^3/2 ]
        //     [ dt^3/2 dt^2   ]
        RealMatrix Q = tmp.scalarMultiply(Math.pow(accelNoise, 2));

        // P0 = [ 1 1 ]
        //      [ 1 1 ]
        RealMatrix P0 = new Array2DRowRealMatrix(new double[][] { { 1, 1 }, { 1, 1 } });

        // R = [ measurementNoise^2 ]
        RealMatrix R = new Array2DRowRealMatrix(
                new double[] { Math.pow(measurementNoise, 2) });

        // constant control input, increase velocity by 0.1 m/s per cycle
        RealVector u = new ArrayRealVector(new double[] { 0.1d });

        ProcessModel pm = new DefaultProcessModel(A, B, Q, x, P0);
        MeasurementModel mm = new DefaultMeasurementModel(H, R);
        KalmanFilter filter = new KalmanFilter(pm, mm);

        Assert.assertEquals(1, filter.getMeasurementDimension());
        Assert.assertEquals(2, filter.getStateDimension());

        assertMatrixEquals(P0.getData(), filter.getErrorCovariance());

        // check the initial state
        double[] expectedInitialState = new double[] { 0.0, 0.0 };
        assertVectorEquals(expectedInitialState, filter.getStateEstimation());

        RandomGenerator rand = new JDKRandomGenerator();

        RealVector tmpPNoise = new ArrayRealVector(
                new double[] { Math.pow(dt, 2d) / 2d, dt });

        RealVector mNoise = new ArrayRealVector(1);

        // iterate 60 steps
        for (int i = 0; i < 60; i++) {
            filter.predict(u);

            // Simulate the process
            RealVector pNoise = tmpPNoise.mapMultiply(accelNoise * rand.nextGaussian());

            // x = A * x + B * u + pNoise
            x = A.operate(x).add(B.operate(u)).add(pNoise);

            // Simulate the measurement
            mNoise.setEntry(0, measurementNoise * rand.nextGaussian());

            // z = H * x + m_noise
            RealVector z = H.operate(x).add(mNoise);

            filter.correct(z);

            // state estimate shouldn't be larger than the measurement noise
            double diff = Math.abs(x.getEntry(0) - filter.getStateEstimation()[0]);
View Full Code Here

          {27, 37, 47}  
        };
        AbstractMultipleLinearRegression regression = createRegression();
        regression.newSampleData(design, 4, 3);
        RealMatrix flatX = regression.getX().copy();
        RealVector flatY = regression.getY().copy();
        regression.newXSampleData(x);
        regression.newYSampleData(y);
        Assert.assertEquals(flatX, regression.getX());
        Assert.assertEquals(flatY, regression.getY());
       
View Full Code Here

        };
        double[][] covariance = MatrixUtils.createRealIdentityMatrix(4).scalarMultiply(2).getData();
        GLSMultipleLinearRegression regression = new GLSMultipleLinearRegression();
        regression.newSampleData(y, x, covariance);
        RealMatrix combinedX = regression.getX().copy();
        RealVector combinedY = regression.getY().copy();
        RealMatrix combinedCovInv = regression.getOmegaInverse();
        regression.newXSampleData(x);
        regression.newYSampleData(y);
        Assert.assertEquals(combinedX, regression.getX());
        Assert.assertEquals(combinedY, regression.getY());
View Full Code Here

        // and Longley OLS beta vector as "true" beta.  Generate
        // Y values by XB + u where u is a CorrelatedRandomVector generated
        // from cov.
        OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression();
        ols.newSampleData(longley, nObs, 6);
        final RealVector b = ols.calculateBeta().copy();
        final RealMatrix x = ols.getX().copy();
       
        // Create a GLS model to reuse
        GLSMultipleLinearRegression gls = new GLSMultipleLinearRegression();
        gls.newSampleData(longley, nObs, 6);
        gls.newCovarianceData(cov.getData());
       
        // Create aggregators for stats measuring model performance
        DescriptiveStatistics olsBetaStats = new DescriptiveStatistics();
        DescriptiveStatistics glsBetaStats = new DescriptiveStatistics();
       
        // Generate Y vectors for 10000 models, estimate GLS and OLS and
        // Verify that OLS estimates are better
        final int nModels = 10000;
        for (int i = 0; i < nModels; i++) {
           
            // Generate y = xb + u with u cov
            RealVector u = MatrixUtils.createRealVector(gen.nextVector());
            double[] y = u.add(x.operate(b)).toArray();
           
            // Estimate OLS parameters
            ols.newYSampleData(y);
            RealVector olsBeta = ols.calculateBeta();
           
            // Estimate GLS parameters
            gls.newYSampleData(y);
            RealVector glsBeta = gls.calculateBeta();
           
            // Record deviations from "true" beta
            double dist = olsBeta.getDistance(b);
            olsBetaStats.addValue(dist * dist);
            dist = glsBeta.getDistance(b);
            glsBetaStats.addValue(dist * dist);
           
        }
       
        // Verify that GLS is on average more efficient, lower variance
View Full Code Here

          {27, 37, 47}  
        };
        OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression();
        regression.newSampleData(y, x);
        RealMatrix combinedX = regression.getX().copy();
        RealVector combinedY = regression.getY().copy();
        regression.newXSampleData(x);
        regression.newYSampleData(y);
        Assert.assertEquals(combinedX, regression.getX());
        Assert.assertEquals(combinedY, regression.getY());
       
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.RealVector$Entry

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.