Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.RealVector$Entry


        Assert.assertEquals(evaluation.getPoint().getEntry(0), 0, 0);
    }

    @Test
    public void testLazyEvaluation() {
        final RealVector dummy = new ArrayRealVector(new double[] { 0 });

        final LeastSquaresProblem p
            = LeastSquaresFactory.create(LeastSquaresFactory.model(dummyModel(), dummyJacobian()),
                                         dummy, dummy, null, null, 0, 0, true, null);
View Full Code Here


    }

    // MATH-1151
    @Test
    public void testLazyEvaluationPrecondition() {
        final RealVector dummy = new ArrayRealVector(new double[] { 0 });

        // "ValueAndJacobianFunction" is required but we implement only
        // "MultivariateJacobianFunction".
        final MultivariateJacobianFunction m1 = new MultivariateJacobianFunction() {
                public Pair<RealVector, RealMatrix> value(RealVector notUsed) {
View Full Code Here

        LeastSquaresFactory.create(m2, dummy, dummy, null, null, 0, 0, true, null);
    }

    @Test
    public void testDirectEvaluation() {
        final RealVector dummy = new ArrayRealVector(new double[] { 0 });

        final LeastSquaresProblem p
            = LeastSquaresFactory.create(LeastSquaresFactory.model(dummyModel(), dummyJacobian()),
                                         dummy, dummy, null, null, 0, 0, false, null);
View Full Code Here

                        .start(start)
                        .maxIterations(20)
                        .build()
        );

        final RealVector solution = optimum.getPoint();
        final double[] expectedSolution = { 10.4, 958.3, 131.4, 33.9, 205.0 };

        final RealMatrix covarMatrix = optimum.getCovariances(1e-14);
        final double[][] expectedCovarMatrix = {
            { 3.38, -3.69, 27.98, -2.34, -49.24 },
            { -3.69, 2492.26, 81.89, -69.21, -8.9 },
            { 27.98, 81.89, 468.99, -44.22, -615.44 },
            { -2.34, -69.21, -44.22, 6.39, 53.80 },
            { -49.24, -8.9, -615.44, 53.8, 929.45 }
        };

        final int numParams = expectedSolution.length;

        // Check that the computed solution is within the reference error range.
        for (int i = 0; i < numParams; i++) {
            final double error = FastMath.sqrt(expectedCovarMatrix[i][i]);
            Assert.assertEquals("Parameter " + i, expectedSolution[i], solution.getEntry(i), error);
        }

        // Check that each entry of the computed covariance matrix is within 10%
        // of the reference matrix entry.
        for (int i = 0; i < numParams; i++) {
View Full Code Here

                    }
                    hs.setEntry(i, hs.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(j));
                    ih++;
                }
            }
            final RealVector tmp = interpolationPoints.operate(s).ebeMultiply(modelSecondDerivativesParameters);
            for (int k = 0; k < npt; k++) {
                if (modelSecondDerivativesParameters.getEntry(k) != ZERO) {
                    for (int i = 0; i < n; i++) {
                        hs.setEntry(i, hs.getEntry(i) + tmp.getEntry(k) * interpolationPoints.getEntry(k, i));
                    }
                }
            }
            if (crvmin != ZERO) {
                state = 50; break;
View Full Code Here

    /**
     * @param point Interpolation point.
     * @return the interpolated value.
     */
    public double value(double[] point) {
        final RealVector p = new ArrayRealVector(point);

        // Reset.
        for (MicrosphereSurfaceElement md : microsphere) {
            md.reset();
        }

        // Compute contribution of each sample points to the microsphere elements illumination
        for (Map.Entry<RealVector, Double> sd : samples.entrySet()) {

            // Vector between interpolation point and current sample point.
            final RealVector diff = sd.getKey().subtract(p);
            final double diffNorm = diff.getNorm();

            if (FastMath.abs(diffNorm) < FastMath.ulp(1d)) {
                // No need to interpolate, as the interpolation point is
                // actually (very close to) one of the sampled points.
                return sd.getValue();
View Full Code Here

    /**
     * {@inheritDoc}
     */
    public double[] estimateRegressionParameters() {
        RealVector b = calculateBeta();
        return b.toArray();
    }
View Full Code Here

    /**
     * {@inheritDoc}
     */
    public double[] estimateResiduals() {
        RealVector b = calculateBeta();
        RealVector e = yVector.subtract(xMatrix.operate(b));
        return e.toArray();
    }
View Full Code Here

     *
     * @return error variance estimate
     * @since 2.2
     */
    protected double calculateErrorVariance() {
        RealVector residuals = calculateResiduals();
        return residuals.dotProduct(residuals) /
               (xMatrix.getRowDimension() - xMatrix.getColumnDimension());
    }
View Full Code Here

     * </pre>
     *
     * @return The residuals [n,1] matrix
     */
    protected RealVector calculateResiduals() {
        RealVector b = calculateBeta();
        return yVector.subtract(xMatrix.operate(b));
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.RealVector$Entry

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.