Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.RealVector$Entry


        if (getNumObjectiveFunctions() == 2) {
            matrix.setEntry(0, 0, -1);
        }
        int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1;
        matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1);
        RealVector objectiveCoefficients =
            maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients();
        copyArray(objectiveCoefficients.toArray(), matrix.getDataRef()[zIndex]);
        matrix.setEntry(zIndex, width - 1,
            maximize ? f.getConstantTerm() : -1 * f.getConstantTerm());

        if (!restrictToNonNegative) {
            matrix.setEntry(zIndex, getSlackVariableOffset() - 1,
View Full Code Here


     *
     * @return residual sum of squares
     * @since 2.2
     */
    public double calculateResidualSumOfSquares() {
        final RealVector residuals = calculateResiduals();
        return residuals.dotProduct(residuals);
    }
View Full Code Here

     * @return error variance
     * @since 2.2
     */
    @Override
    protected double calculateErrorVariance() {
        RealVector residuals = calculateResiduals();
        double t = residuals.dotProduct(getOmegaInverse().operate(residuals));
        return t / (getX().getRowDimension() - getX().getColumnDimension());

    }
View Full Code Here

        // semi-definite matrix, we can use the cholesky decomposition
        DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
        RealMatrix invertedS = solver.getInverse();

        // Inn = z(k) - H * xHat(k)-
        RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

        // calculate gain matrix
        // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
        // K(k) = P(k)- * H' * S^-1
        RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);
View Full Code Here

            matrix.setEntry(0, 0, -1);
        }

        int zIndex = (getNumObjectiveFunctions() == 1) ? 0 : 1;
        matrix.setEntry(zIndex, zIndex, maximize ? 1 : -1);
        RealVector objectiveCoefficients = maximize ? f.getCoefficients().mapMultiply(-1) : f.getCoefficients();
        copyArray(objectiveCoefficients.toArray(), matrix.getDataRef()[zIndex]);
        matrix.setEntry(zIndex, width - 1, maximize ? f.getConstantTerm() : -1 * f.getConstantTerm());

        if (!restrictToNonNegative) {
            matrix.setEntry(zIndex, getSlackVariableOffset() - 1,
                            getInvertedCoefficientSum(objectiveCoefficients));
View Full Code Here

                    }
                    hs.setEntry(i, hs.getEntry(i) + modelSecondDerivativesValues.getEntry(ih) * s.getEntry(j));
                    ih++;
                }
            }
            final RealVector tmp = interpolationPoints.operate(s).ebeMultiply(modelSecondDerivativesParameters);
            for (int k = 0; k < npt; k++) {
                if (modelSecondDerivativesParameters.getEntry(k) != ZERO) {
                    for (int i = 0; i < n; i++) {
                        hs.setEntry(i, hs.getEntry(i) + tmp.getEntry(k) * interpolationPoints.getEntry(k, i));
                    }
                }
            }
            if (crvmin != ZERO) {
                state = 50; break;
View Full Code Here

        // The control vector, which adds acceleration to the kinematic equations.
        // 0          =>  x(n+1) =  x(n+1)
        // 0          => vx(n+1) = vx(n+1)
        // -9.81*dt^2 =>  y(n+1) =  y(n+1) - 1/2 * 9.81 * dt^2
        // -9.81*dt   => vy(n+1) = vy(n+1) - 9.81 * dt
        final RealVector controlVector =
                MatrixUtils.createRealVector(new double[] { 0, 0, 0.5 * -9.81 * dt * dt, -9.81 * dt } );

        // The control matrix B only update y and vy, see control vector
        final RealMatrix B = MatrixUtils.createRealMatrix(new double[][] {
                { 0, 0, 0, 0 },
                { 0, 0, 0, 0 },
                { 0, 0, 1, 0 },
                { 0, 0, 0, 1 }
        });

        // After state transition and control, here are the equations:
        //
        //  x(n+1) = x(n) + vx(n)
        // vx(n+1) = vx(n)
        //  y(n+1) = y(n) + vy(n) - 0.5 * 9.81 * dt^2
        // vy(n+1) = vy(n) + -9.81 * dt
        //
        // Which, if you recall, are the equations of motion for a parabola.

        // We only observe the x/y position of the cannonball
        final RealMatrix H = MatrixUtils.createRealMatrix(new double[][] {
                { 1, 0, 0, 0 },
                { 0, 0, 0, 0 },
                { 0, 0, 1, 0 },
                { 0, 0, 0, 0 }
        });
       
        // This is our guess of the initial state.  I intentionally set the Y value
        // wrong to illustrate how fast the Kalman filter will pick up on that.
        final double speedX = cannonball.getXVelocity();
        final double speedY = cannonball.getYVelocity();
        final RealVector initialState = MatrixUtils.createRealVector(new double[] { 0, speedX, 100, speedY } );

        // The initial error covariance matrix, the variance = noise^2
        final double var = measurementNoise * measurementNoise;
        final RealMatrix initialErrorCovariance = MatrixUtils.createRealMatrix(new double[][] {
                { var,    0,   0,    0 },
View Full Code Here

    /**
     * {@inheritDoc}
     */
    public double[] estimateRegressionParameters() {
        RealVector b = calculateBeta();
        return b.toArray();
    }
View Full Code Here

    /**
     * {@inheritDoc}
     */
    public double[] estimateResiduals() {
        RealVector b = calculateBeta();
        RealVector e = yVector.subtract(xMatrix.operate(b));
        return e.toArray();
    }
View Full Code Here

     *
     * @return error variance estimate
     * @since 2.2
     */
    protected double calculateErrorVariance() {
        RealVector residuals = calculateResiduals();
        return residuals.dotProduct(residuals) /
               (xMatrix.getRowDimension() - xMatrix.getColumnDimension());
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.RealVector$Entry

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.