Package org.apache.commons.math3.linear

Examples of org.apache.commons.math3.linear.EigenDecomposition$Solver


        if (ccov1 + ccovmu + negccov > 0 &&
            (iterations % 1. / (ccov1 + ccovmu + negccov) / dimension / 10.) < 1) {
            // to achieve O(N^2)
            C = triu(C, 0).add(triu(C, 1).transpose());
            // enforce symmetry to prevent complex numbers
            final EigenDecomposition eig = new EigenDecomposition(C);
            B = eig.getV(); // eigen decomposition, B==normalized eigenvectors
            D = eig.getD();
            diagD = diag(D);
            if (min(diagD) <= 0) {
                for (int i = 0; i < dimension; i++) {
                    if (diagD.getEntry(i, 0) < 0) {
                        diagD.setEntry(i, 0, 0);
View Full Code Here


     *
     * @param m Symmetric, positive-definite (weight) matrix.
     * @return the square-root of the weight matrix.
     */
    private RealMatrix squareRoot(RealMatrix m) {
        final EigenDecomposition dec = new EigenDecomposition(m);
        return dec.getSquareRoot();
    }
View Full Code Here

     *
     * @param m Symmetric, positive-definite (weight) matrix.
     * @return the square-root of the weight matrix.
     */
    private RealMatrix squareRoot(RealMatrix m) {
        final EigenDecomposition dec = new EigenDecomposition(m);
        return dec.getSquareRoot();
    }
View Full Code Here

        this.means = MathArrays.copyOf(means);

        covarianceMatrix = new Array2DRowRealMatrix(covariances);

        // Covariance matrix eigen decomposition.
        final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix);

        // Compute and store the inverse.
        covarianceMatrixInverse = covMatDec.getSolver().getInverse();
        // Compute and store the determinant.
        covarianceMatrixDeterminant = covMatDec.getDeterminant();

        // Eigenvalues of the covariance matrix.
        final double[] covMatEigenvalues = covMatDec.getRealEigenvalues();

        for (int i = 0; i < covMatEigenvalues.length; i++) {
            if (covMatEigenvalues[i] < 0) {
                throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0);
            }
        }

        // Matrix where each column is an eigenvector of the covariance matrix.
        final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim);
        for (int v = 0; v < dim; v++) {
            final double[] evec = covMatDec.getEigenvector(v).toArray();
            covMatEigenvectors.setColumn(v, evec);
        }

        final RealMatrix tmpMatrix = covMatEigenvectors.transpose();
View Full Code Here

        if (ccov1 + ccovmu + negccov > 0 &&
            (iterations % 1. / (ccov1 + ccovmu + negccov) / dimension / 10.) < 1) {
            // to achieve O(N^2)
            C = triu(C, 0).add(triu(C, 1).transpose());
            // enforce symmetry to prevent complex numbers
            final EigenDecomposition eig = new EigenDecomposition(C);
            B = eig.getV(); // eigen decomposition, B==normalized eigenvectors
            D = eig.getD();
            diagD = diag(D);
            if (min(diagD) <= 0) {
                for (int i = 0; i < dimension; i++) {
                    if (diagD.getEntry(i, 0) < 0) {
                        diagD.setEntry(i, 0, 0);
View Full Code Here

     * @return Returns the BICValue of the Gaussian model that approximates the
     *         the feature vectors data samples
     */
    public static double getBICValue(Array2DRowRealMatrix mat) {
        double ret = 0;
        EigenDecomposition ed = new EigenDecomposition(new Covariance(mat).getCovarianceMatrix());
        double[] re = ed.getRealEigenvalues();
        for (int i = 0; i < re.length; i++)
            ret += Math.log(re[i]);
        return ret * (mat.getRowDimension() / 2);
    }
View Full Code Here

     * @throws NonSquareMatrixException if the argument is not
     * a square matrix.
     */
    public Weight(RealMatrix weight) {
        if (weight.getColumnDimension() != weight.getRowDimension()) {
            throw new NonSquareMatrixException(weight.getColumnDimension(),
                                               weight.getRowDimension());
        }

        weightMatrix = weight.copy();
    }
View Full Code Here

     * @throws NonSquareMatrixException if the argument is not
     * a square matrix.
     */
    public Weight(RealMatrix weight) {
        if (weight.getColumnDimension() != weight.getRowDimension()) {
            throw new NonSquareMatrixException(weight.getColumnDimension(),
                                               weight.getRowDimension());
        }

        weightMatrix = weight.copy();
    }
View Full Code Here

        // Compute transpose(J)J.
        final RealMatrix jTj = j.transpose().multiply(j);

        // Compute the covariances matrix.
        final DecompositionSolver solver
            = new QRDecomposition(jTj, threshold).getSolver();
        return solver.getInverse().getData();
    }
View Full Code Here

        SiteWithPolynomial nearSite = nearestSites.get(row);
        DefaultPolynomial.populateMatrix(matrix, row, nearSite.pos.x, nearSite.pos.z);
        vector.setEntry(row, nearSite.pos.y);
      }
     
      QRDecomposition qr = new QRDecomposition(matrix);
      RealVector solution = qr.getSolver().solve(vector);
       
      double[] coeffs = solution.toArray();
     
      for (double coeff : coeffs) {
        if (coeff > 10e3) {
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.linear.EigenDecomposition$Solver

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.