Package org.apache.commons.math3.distribution

Examples of org.apache.commons.math3.distribution.HypergeometricDistribution


                return false;
            }
            final int    n = FastMath.max(1, (int) FastMath.ceil(FastMath.abs(dt) / maxCheckInterval));
            final double h = dt / n;

            final UnivariateFunction f = new UnivariateFunction() {
                public double value(final double t) throws LocalMaxCountExceededException {
                    try {
                        interpolator.setInterpolatedTime(t);
                        return handler.g(t, getCompleteState(interpolator));
                    } catch (MaxCountExceededException mcee) {
                        throw new LocalMaxCountExceededException(mcee);
                    }
                }
            };

            double ta = t0;
            double ga = g0;
            for (int i = 0; i < n; ++i) {

                // evaluate handler value at the end of the substep
                final double tb = t0 + (i + 1) * h;
                interpolator.setInterpolatedTime(tb);
                final double gb = handler.g(tb, getCompleteState(interpolator));

                // check events occurrence
                if (g0Positive ^ (gb >= 0)) {
                    // there is a sign change: an event is expected during this step

                    // variation direction, with respect to the integration direction
                    increasing = gb >= ga;

                    // find the event time making sure we select a solution just at or past the exact root
                    final double root;
                    if (solver instanceof BracketedUnivariateSolver<?>) {
                        @SuppressWarnings("unchecked")
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                (BracketedUnivariateSolver<UnivariateFunction>) solver;
                        root = forward ?
                               bracketing.solve(maxIterationCount, f, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               bracketing.solve(maxIterationCount, f, tb, ta, AllowedSolution.LEFT_SIDE);
                    } else {
                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
                    }

                    if ((!Double.isNaN(previousEventTime)) &&
                        (FastMath.abs(root - ta) <= convergence) &&
                        (FastMath.abs(root - previousEventTime) <= convergence)) {
                        // we have either found nothing or found (again ?) a past event,
                        // retry the substep excluding this value, and taking care to have the
                        // required sign in case the g function is noisy around its zero and
                        // crosses the axis several times
                        do {
                            ta = forward ? ta + convergence : ta - convergence;
                            ga = f.value(ta);
                        } while ((g0Positive ^ (ga >= 0)) && (forward ^ (ta >= tb)));
                        --i;
                    } else if (Double.isNaN(previousEventTime) ||
                               (FastMath.abs(previousEventTime - root) > convergence)) {
                        pendingEventTime = root;
View Full Code Here


                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
View Full Code Here

     * or {@code sampleSize > populationSize}.
     * @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
     * @throws NotPositiveException  if {@code numberOfSuccesses < 0}.
     */
    public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
        return new HypergeometricDistribution(getRandomGenerator(),populationSize,
                numberOfSuccesses, sampleSize).sample();
    }
View Full Code Here

        HypergeometricDistributionTest testInstance = new HypergeometricDistributionTest();
        int[] densityPoints = testInstance.makeDensityTestPoints();
        double[] densityValues = testInstance.makeDensityTestValues();
        int sampleSize = 1000;
        int length = TestUtils.eliminateZeroMassPoints(densityPoints, densityValues);
        HypergeometricDistribution distribution = (HypergeometricDistribution) testInstance.makeDistribution();
        double[] expectedCounts = new double[length];
        long[] observedCounts = new long[length];
        for (int i = 0; i < length; i++) {
            expectedCounts[i] = sampleSize * densityValues[i];
        }
        randomData.reSeed(1000);
        for (int i = 0; i < sampleSize; i++) {
          int value = randomData.nextHypergeometric(distribution.getPopulationSize(),
                  distribution.getNumberOfSuccesses(), distribution.getSampleSize());
          for (int j = 0; j < length; j++) {
              if (value == densityPoints[j]) {
                  observedCounts[j]++;
              }
          }
View Full Code Here

     * @param sampleSize the sample size of the Hypergeometric distribution
     * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
     * @since 2.2
     */
    public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) {
        return nextInversionDeviate(new HypergeometricDistribution(populationSize, numberOfSuccesses, sampleSize));
    }
View Full Code Here

     * or {@code sampleSize > populationSize}.
     * @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
     * @throws NotPositiveException  if {@code numberOfSuccesses < 0}.
     */
    public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
        return new HypergeometricDistribution(getRandomGenerator(),populationSize,
                numberOfSuccesses, sampleSize).sample();
    }
View Full Code Here

        HypergeometricDistributionTest testInstance = new HypergeometricDistributionTest();
        int[] densityPoints = testInstance.makeDensityTestPoints();
        double[] densityValues = testInstance.makeDensityTestValues();
        int sampleSize = 1000;
        int length = TestUtils.eliminateZeroMassPoints(densityPoints, densityValues);
        HypergeometricDistribution distribution = (HypergeometricDistribution) testInstance.makeDistribution();
        double[] expectedCounts = new double[length];
        long[] observedCounts = new long[length];
        for (int i = 0; i < length; i++) {
            expectedCounts[i] = sampleSize * densityValues[i];
        }
        randomData.reSeed(1000);
        for (int i = 0; i < sampleSize; i++) {
          int value = randomData.nextHypergeometric(distribution.getPopulationSize(),
                  distribution.getNumberOfSuccesses(), distribution.getSampleSize());
          for (int j = 0; j < length; j++) {
              if (value == densityPoints[j]) {
                  observedCounts[j]++;
              }
          }
View Full Code Here

        HypergeometricDistributionTest testInstance = new HypergeometricDistributionTest();
        int[] densityPoints = testInstance.makeDensityTestPoints();
        double[] densityValues = testInstance.makeDensityTestValues();
        int sampleSize = 1000;
        int length = TestUtils.eliminateZeroMassPoints(densityPoints, densityValues);
        HypergeometricDistribution distribution = (HypergeometricDistribution) testInstance.makeDistribution();
        double[] expectedCounts = new double[length];
        long[] observedCounts = new long[length];
        for (int i = 0; i < length; i++) {
            expectedCounts[i] = sampleSize * densityValues[i];
        }
        randomData.reSeed(1000);
        for (int i = 0; i < sampleSize; i++) {
          int value = randomData.nextHypergeometric(distribution.getPopulationSize(),
                  distribution.getNumberOfSuccesses(), distribution.getSampleSize());
          for (int j = 0; j < length; j++) {
              if (value == densityPoints[j]) {
                  observedCounts[j]++;
              }
          }
View Full Code Here

     * or {@code sampleSize > populationSize}.
     * @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
     * @throws NotPositiveException  if {@code numberOfSuccesses < 0}.
     */
    public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
        return new HypergeometricDistribution(getRandomGenerator(),populationSize,
                numberOfSuccesses, sampleSize).sample();
    }
View Full Code Here

     * or {@code sampleSize > populationSize}.
     * @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
     * @throws NotPositiveException  if {@code numberOfSuccesses < 0}.
     */
    public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize) throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
        return new HypergeometricDistribution(getRan(),populationSize,
                numberOfSuccesses, sampleSize).sample();
    }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.distribution.HypergeometricDistribution

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.