Package org.apache.commons.math3.distribution

Examples of org.apache.commons.math3.distribution.BetaDistribution


                return false;
            }
            final int    n = FastMath.max(1, (int) FastMath.ceil(FastMath.abs(dt) / maxCheckInterval));
            final double h = dt / n;

            final UnivariateFunction f = new UnivariateFunction() {
                public double value(final double t) throws LocalMaxCountExceededException {
                    try {
                        interpolator.setInterpolatedTime(t);
                        return handler.g(t, getCompleteState(interpolator));
                    } catch (MaxCountExceededException mcee) {
                        throw new LocalMaxCountExceededException(mcee);
                    }
                }
            };

            double ta = t0;
            double ga = g0;
            for (int i = 0; i < n; ++i) {

                // evaluate handler value at the end of the substep
                final double tb = t0 + (i + 1) * h;
                interpolator.setInterpolatedTime(tb);
                final double gb = handler.g(tb, getCompleteState(interpolator));

                // check events occurrence
                if (g0Positive ^ (gb >= 0)) {
                    // there is a sign change: an event is expected during this step

                    // variation direction, with respect to the integration direction
                    increasing = gb >= ga;

                    // find the event time making sure we select a solution just at or past the exact root
                    final double root;
                    if (solver instanceof BracketedUnivariateSolver<?>) {
                        @SuppressWarnings("unchecked")
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                (BracketedUnivariateSolver<UnivariateFunction>) solver;
                        root = forward ?
                               bracketing.solve(maxIterationCount, f, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               bracketing.solve(maxIterationCount, f, tb, ta, AllowedSolution.LEFT_SIDE);
                    } else {
                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
                    }

                    if ((!Double.isNaN(previousEventTime)) &&
                        (FastMath.abs(root - ta) <= convergence) &&
                        (FastMath.abs(root - previousEventTime) <= convergence)) {
                        // we have either found nothing or found (again ?) a past event,
                        // retry the substep excluding this value, and taking care to have the
                        // required sign in case the g function is noisy around its zero and
                        // crosses the axis several times
                        do {
                            ta = forward ? ta + convergence : ta - convergence;
                            ga = f.value(ta);
                        } while ((g0Positive ^ (ga >= 0)) && (forward ^ (ta >= tb)));
                        --i;
                    } else if (Double.isNaN(previousEventTime) ||
                               (FastMath.abs(previousEventTime - root) > convergence)) {
                        pendingEventTime = root;
View Full Code Here


                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
View Full Code Here

     * @param alpha first distribution shape parameter
     * @param beta second distribution shape parameter
     * @return random value sampled from the beta(alpha, beta) distribution
     */
    public double nextBeta(double alpha, double beta) {
        return new BetaDistribution(getRandomGenerator(), alpha, beta,
                BetaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample();
    }
View Full Code Here

        for (int i = 0; i < 10; i++) {
            quantiles[i] = rdg.nextUniform(0, 1);
        }
        // Reseed again so the inversion generator gets the same sequence
        rg.setSeed(100);
        BetaDistribution betaDistribution = new BetaDistribution(rg, 2, 4,
                                                                 BetaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
        /*
         *  Generate a sequence of deviates using inversion - the distribution function
         *  evaluated at the random value from the distribution should match the uniform
         *  random value used to generate it, which is stored in the quantiles[] array.
         */
        for (int i = 0; i < 10; i++) {
            double value = betaDistribution.sample();
            Assert.assertEquals(betaDistribution.cumulativeProbability(value), quantiles[i], 10E-9);
        }
    }
View Full Code Here

        }
    }

    @Test
    public void testNextBeta() {
        double[] quartiles = TestUtils.getDistributionQuartiles(new BetaDistribution(2,5));
        long[] counts = new long[4];
        randomData.reSeed(1000);
        for (int i = 0; i < 1000; i++) {
            double value = randomData.nextBeta(2, 5);
            TestUtils.updateCounts(value, counts, quartiles);
View Full Code Here

     * @param beta second distribution shape parameter
     * @return random value sampled from the beta(alpha, beta) distribution
     * @since 2.2
     */
    public double nextBeta(double alpha, double beta) {
        return nextInversionDeviate(new BetaDistribution(alpha, beta));
    }
View Full Code Here

     * @param alpha first distribution shape parameter
     * @param beta second distribution shape parameter
     * @return random value sampled from the beta(alpha, beta) distribution
     */
    public double nextBeta(double alpha, double beta) {
        return new BetaDistribution(getRandomGenerator(), alpha, beta,
                BetaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample();
    }
View Full Code Here

        for (int i = 0; i < 10; i++) {
            quantiles[i] = rdg.nextUniform(0, 1);
        }
        // Reseed again so the inversion generator gets the same sequence
        rg.setSeed(100);
        BetaDistribution betaDistribution = new BetaDistribution(rg, 2, 4,
                                                                 BetaDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
        /*
         *  Generate a sequence of deviates using inversion - the distribution function
         *  evaluated at the random value from the distribution should match the uniform
         *  random value used to generate it, which is stored in the quantiles[] array.
         */
        for (int i = 0; i < 10; i++) {
            double value = betaDistribution.sample();
            Assert.assertEquals(betaDistribution.cumulativeProbability(value), quantiles[i], 10E-9);
        }
    }
View Full Code Here

        }
    }

    @Test
    public void testNextBeta() {
        double[] quartiles = TestUtils.getDistributionQuartiles(new BetaDistribution(2,5));
        long[] counts = new long[4];
        randomData.reSeed(1000);
        for (int i = 0; i < 1000; i++) {
            double value = randomData.nextBeta(2, 5);
            TestUtils.updateCounts(value, counts, quartiles);
View Full Code Here

            container.add(comp, c);

            c.gridx++;
            comp = createComponent("Beta", 0, 1,
                                   new String[] { "α=β=0.5", "α=5,β=1", "α=1,β=3", "α=2,β=2", "α=2,β=5" },
                                   new BetaDistribution(0.5, 0.5),
                                   new BetaDistribution(5, 1),
                                   new BetaDistribution(1, 3),
                                   new BetaDistribution(2, 2),
                                   new BetaDistribution(2, 5));
            container.add(comp, c);

            c.gridx++;
            comp = createComponent("Cauchy", -5, 5,
                                   new String[] { "x=0,γ=0.5", "x=0,γ=1", "x=0,γ=2", "x=-2,γ=1" },
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.distribution.BetaDistribution

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.