Package org.apache.commons.math3.analysis

Examples of org.apache.commons.math3.analysis.ParametricUnivariateFunction


        fitter.addObservedPoint(2.805d, 0.6934785852953367d);
        fitter.addObservedPoint(2.74333333333333d, 0.6306772025518496d);
        fitter.addObservedPoint(1.655d, 0.9474675497289684);
        fitter.addObservedPoint(1.725d, 0.9013594835804194d);

        ParametricUnivariateFunction sif = new SimpleInverseFunction();

        double[] initialguess1 = new double[1];
        initialguess1[0] = 1.0d;
        Assert.assertEquals(1, fitter.fit(sif, initialguess1).length);
View Full Code Here


        fitter.addObservedPoint(2.805d, 0.6934785852953367d);
        fitter.addObservedPoint(2.74333333333333d, 0.6306772025518496d);
        fitter.addObservedPoint(1.655d, 0.9474675497289684);
        fitter.addObservedPoint(1.725d, 0.9013594835804194d);

        ParametricUnivariateFunction sif = new SimpleInverseFunction();

        double[] initialguess1 = new double[1];
        initialguess1[0] = 1.0d;
        Assert.assertEquals(1.6357215104109237, fitter.fit(sif, initialguess1)[0], 1.0e-14);
View Full Code Here

        curveFitter.addObservedPoint( 62, 17586);
        curveFitter.addObservedPoint(125, 30582);
        curveFitter.addObservedPoint(250, 45087);
        curveFitter.addObservedPoint(500, 50683);

        ParametricUnivariateFunction f = new ParametricUnivariateFunction() {
            public double value(double x, double ... parameters) {
                double a = parameters[0];
                double b = parameters[1];
                double c = parameters[2];
                double d = parameters[3];
View Full Code Here

        fitter.addObservedPoint(2.805d, 0.6934785852953367d);
        fitter.addObservedPoint(2.74333333333333d, 0.6306772025518496d);
        fitter.addObservedPoint(1.655d, 0.9474675497289684);
        fitter.addObservedPoint(1.725d, 0.9013594835804194d);

        ParametricUnivariateFunction sif = new SimpleInverseFunction();

        double[] initialguess1 = new double[1];
        initialguess1[0] = 1.0d;
        Assert.assertEquals(1, fitter.fit(sif, initialguess1).length);
View Full Code Here

        fitter.addObservedPoint(2.805d, 0.6934785852953367d);
        fitter.addObservedPoint(2.74333333333333d, 0.6306772025518496d);
        fitter.addObservedPoint(1.655d, 0.9474675497289684);
        fitter.addObservedPoint(1.725d, 0.9013594835804194d);

        ParametricUnivariateFunction sif = new SimpleInverseFunction();

        double[] initialguess1 = new double[1];
        initialguess1[0] = 1.0d;
        Assert.assertEquals(1.6357215104109237, fitter.fit(sif, initialguess1)[0], 1.0e-14);
View Full Code Here

        curveFitter.addObservedPoint( 62, 17586);
        curveFitter.addObservedPoint(125, 30582);
        curveFitter.addObservedPoint(250, 45087);
        curveFitter.addObservedPoint(500, 50683);

        ParametricUnivariateFunction f = new ParametricUnivariateFunction() {

            public double value(double x, double ... parameters) {

                double a = parameters[0];
                double b = parameters[1];
View Full Code Here

                return false;
            }
            final int    n = FastMath.max(1, (int) FastMath.ceil(FastMath.abs(dt) / maxCheckInterval));
            final double h = dt / n;

            final UnivariateFunction f = new UnivariateFunction() {
                public double value(final double t) throws LocalMaxCountExceededException {
                    try {
                        interpolator.setInterpolatedTime(t);
                        return handler.g(t, getCompleteState(interpolator));
                    } catch (MaxCountExceededException mcee) {
                        throw new LocalMaxCountExceededException(mcee);
                    }
                }
            };

            double ta = t0;
            double ga = g0;
            for (int i = 0; i < n; ++i) {

                // evaluate handler value at the end of the substep
                final double tb = t0 + (i + 1) * h;
                interpolator.setInterpolatedTime(tb);
                final double gb = handler.g(tb, getCompleteState(interpolator));

                // check events occurrence
                if (g0Positive ^ (gb >= 0)) {
                    // there is a sign change: an event is expected during this step

                    // variation direction, with respect to the integration direction
                    increasing = gb >= ga;

                    // find the event time making sure we select a solution just at or past the exact root
                    final double root;
                    if (solver instanceof BracketedUnivariateSolver<?>) {
                        @SuppressWarnings("unchecked")
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                (BracketedUnivariateSolver<UnivariateFunction>) solver;
                        root = forward ?
                               bracketing.solve(maxIterationCount, f, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               bracketing.solve(maxIterationCount, f, tb, ta, AllowedSolution.LEFT_SIDE);
                    } else {
                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
                    }

                    if ((!Double.isNaN(previousEventTime)) &&
                        (FastMath.abs(root - ta) <= convergence) &&
                        (FastMath.abs(root - previousEventTime) <= convergence)) {
                        // we have either found nothing or found (again ?) a past event,
                        // retry the substep excluding this value, and taking care to have the
                        // required sign in case the g function is noisy around its zero and
                        // crosses the axis several times
                        do {
                            ta = forward ? ta + convergence : ta - convergence;
                            ga = f.value(ta);
                        } while ((g0Positive ^ (ga >= 0)) && (forward ^ (ta >= tb)));
                        --i;
                    } else if (Double.isNaN(previousEventTime) ||
                               (FastMath.abs(previousEventTime - root) > convergence)) {
                        pendingEventTime = root;
View Full Code Here

                        final double baseRoot = forward ?
                                                solver.solve(maxIterationCount, f, ta, tb) :
                                                solver.solve(maxIterationCount, f, tb, ta);
                        final int remainingEval = maxIterationCount - solver.getEvaluations();
                        BracketedUnivariateSolver<UnivariateFunction> bracketing =
                                new PegasusSolver(solver.getRelativeAccuracy(), solver.getAbsoluteAccuracy());
                        root = forward ?
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, ta, tb, AllowedSolution.RIGHT_SIDE) :
                               UnivariateSolverUtils.forceSide(remainingEval, f, bracketing,
                                                                   baseRoot, tb, ta, AllowedSolution.LEFT_SIDE);
View Full Code Here

                // tests for termination and stringent tolerances
                if (FastMath.abs(actRed) <= TWO_EPS &&
                    preRed <= TWO_EPS &&
                    ratio <= 2.0) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_COST_RELATIVE_TOLERANCE,
                                                   costRelativeTolerance);
                } else if (delta <= TWO_EPS * xNorm) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_PARAMETERS_RELATIVE_TOLERANCE,
                                                   parRelativeTolerance);
                } else if (maxCosine <= TWO_EPS) {
                    throw new ConvergenceException(LocalizedFormats.TOO_SMALL_ORTHOGONALITY_TOLERANCE,
                                                   orthoTolerance);
                }
            }
        }
    }
View Full Code Here

                for (int j = k; j < nR; ++j) {
                    double aki = weightedJacobian[j][permutation[i]];
                    norm2 += aki * aki;
                }
                if (Double.isInfinite(norm2) || Double.isNaN(norm2)) {
                    throw new ConvergenceException(LocalizedFormats.UNABLE_TO_PERFORM_QR_DECOMPOSITION_ON_JACOBIAN,
                                                   nR, nC);
                }
                if (norm2 > ak2) {
                    nextColumn = i;
                    ak2        = norm2;
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.analysis.ParametricUnivariateFunction

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.