Package org.apache.commons.math3.analysis

Examples of org.apache.commons.math3.analysis.MultivariateVectorFunction


            time.add(t);
            count.add(c);
        }

        public ModelFunction getModelFunction() {
            return new ModelFunction(new MultivariateVectorFunction() {
                    public double[] value(double[] params) {
                        double[] values = new double[time.size()];
                        for (int i = 0; i < values.length; ++i) {
                            final double t = time.get(i);
                            values[i] = params[0] +
View Full Code Here


        public Target getTarget() {
            return new Target(target);
        }

        public ModelFunction getModelFunction() {
            return new ModelFunction(new MultivariateVectorFunction() {
                    public double[] value(double[] variables) {
                        return factors.operate(variables);
                    }
                });
        }
View Full Code Here

        final RealMatrix factors
            = new Array2DRowRealMatrix(new double[][] {
                    { 1, 0 },
                    { 0, 1 }
                }, false);
        LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorFunction() {
                public double[] value(double[] variables) {
                    return factors.operate(variables);
                }
            }, new double[] { 2.0, -3.0 });
        SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-6);
View Full Code Here

        final RealMatrix factors
            = new Array2DRowRealMatrix(new double[][] {
                    { 1, 0 },
                    { 0, 1 }
                }, false);
        LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorFunction() {
                public double[] value(double[] variables) {
                    return factors.operate(variables);
                }
            }, new double[] { 2, -3 }, new double[] { 10, 0.1 });
        SimplexOptimizer optimizer = new SimplexOptimizer(-1, 1e-6);
View Full Code Here

        final RealMatrix factors =
            new Array2DRowRealMatrix(new double[][] {
                    { 1, 0 },
                    { 0, 1 }
                }, false);
        LeastSquaresConverter ls = new LeastSquaresConverter(new MultivariateVectorFunction() {
                public double[] value(double[] variables) {
                    return factors.operate(variables);
                }
            }, new double[] { 2, -3 }, new Array2DRowRealMatrix(new double [][] {
                    { 1, 1.2 }, { 1.2, 2 }
View Full Code Here

        }
        return r / points.size();
    }

    public ModelFunction getModelFunction() {
        return new ModelFunction(new MultivariateVectorFunction() {
                public double[] value(double[] params) {
                    Vector2D center = new Vector2D(params[0], params[1]);
                    double radius = getRadius(center);
                    double[] residuals = new double[points.size()];
                    for (int i = 0; i < residuals.length; i++) {
View Full Code Here

        public Target getTarget() {
            return new Target(target);
        }

        public ModelFunction getModelFunction() {
            return new ModelFunction(new MultivariateVectorFunction() {
                    public double[] value(double[] params) {
                        return factors.operate(params);
                    }
                });
        }
View Full Code Here

            }
            return sum;
        }

        public MultivariateVectorFunction gradient() {
            return new MultivariateVectorFunction() {
                public double[] value(double[] point) {
                    return gradient(point);
                }
            };
        }
View Full Code Here

        return sum;
    }

    public MultivariateVectorFunction gradient() {
        return new MultivariateVectorFunction() {
            public double[] value(double[] point) {
                return gradient(point);
            }
        };
    }
View Full Code Here

            }
            return sum;
        }

        public MultivariateVectorFunction gradient() {
            return new MultivariateVectorFunction() {
                public double[] value(double[] point) {
                    return gradient(point);
                }
            };
        }
View Full Code Here

TOP

Related Classes of org.apache.commons.math3.analysis.MultivariateVectorFunction

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.