Package weka.core

Examples of weka.core.Instances.numClasses()


          double maxBestLaplace = leafLaplace;
          double maxBestVal = Double.NaN;
          double maxBestPos = Double.NaN;
          double maxBestTotal = Double.NaN;
          double [][] maxBestCounts = null;
          for(int c = 0; c < n.numClasses(); c++) {  // zero the counts
             counts[0][c] = 0;
             counts[1][c] = 0// shouldn't need to do this ...
          }

          // check smallest val for a in atbop is < upper limit
View Full Code Here


                   }
                }

                // work out best laplace for > theval
                double total = Utils.sum(counts[1]);
                for(int c = 0; c < n.numClasses(); c++) {
                   double temp = (counts[1][c]+1.0)/(total+2.0);
                   if(temp > maxBestLaplace ) {
                      maxBestPos = counts[1][c];
                      maxBestTotal = total;
                      maxBestLaplace = temp;
View Full Code Here

          //           & value($a,$x) = $v}, $k).
          double bestVal = Double.NaN;
          double bestClass = Double.NaN;
          double bestLaplace = leafLaplace;
          double [][] bestCounts = null;
          double [][] counts = new double[2][n.numClasses()];

          for(int x = 0; x < n.numInstances(); x++) {
             if(n.instance(sorted[x]).isMissing(a))
                continue;
View Full Code Here

          for(int x = 0; x < n.numInstances(); x++) {
             if(n.instance(sorted[x]).isMissing(a))
                continue;

             // zero the counts
             for(int c = 0; c < n.numClasses(); c++)
                counts[0][c] = 0;

             double theval = n.instance(sorted[x]).value(a);
             counts[0][(int)n.instance(sorted[x]).classValue()]
               += iindex[1][sorted[x]];
View Full Code Here

             if(!prohibit[(int)theval]) {
                // work out best laplace for > theval
                double total = Utils.sum(counts[0]);
                bestLaplace = leafLaplace;
                bestClass = Double.NaN;
                for(int c = 0; c < n.numClasses(); c++) {
                   double temp = (counts[0][c]+1.0)/(total+2.0);
                   if(temp > bestLaplace
                    && biprob(counts[0][c],total,leafLaplace) > m_BiProbCrit) {
                      bestLaplace = temp;
                      bestClass = c;
View Full Code Here

    props.add(Messages.getInstance().getString("ArffViewerMainPanel_ShowProperties_Filename_Text") + panel.getFilename());
    props.add(Messages.getInstance().getString("ArffViewerMainPanel_ShowProperties_Filename_Text") + inst.relationName());
    props.add(Messages.getInstance().getString("ArffViewerMainPanel_ShowProperties_Instances_Text") + inst.numInstances());
    props.add(Messages.getInstance().getString("ArffViewerMainPanel_ShowProperties_Attributes_Text") + inst.numAttributes());
    props.add(Messages.getInstance().getString("ArffViewerMainPanel_ShowProperties_ClassAttribute_Text") + inst.classAttribute().name());
    props.add(Messages.getInstance().getString("ArffViewerMainPanel_ShowProperties_ClassLabels_Text") + inst.numClasses());
   
    dialog = new ListSelectorDialog(getParentFrame(), new JList(props));
    dialog.showDialog();
  }
 
View Full Code Here

  System.err.println(x+": "+m_Class.value(x) + " has " +
         orderedClasses[x] + " instances.");
    }
    // Iterate from less prevalent class to more frequent one
  oneClass: 
    for(int y=0; y < data.numClasses()-1; y++){ // For each class       
     
      double classIndex = (double)y;
      if(m_Debug){
  int ci = (int)classIndex;
  System.err.println("\n\nClass "+m_Class.value(ci)+"("+ci+"): "
View Full Code Here

      data = rulesetForOneClass(expFPRate, data, classIndex, defDL);
    }

    // Set the default rule
    RipperRule defRule = new RipperRule();
    defRule.setConsequent((double)(data.numClasses()-1));
    m_Ruleset.addElement(defRule);
 
    RuleStats defRuleStat = new RuleStats();
    defRuleStat.setData(data);
    defRuleStat.setNumAllConds(m_Total);
View Full Code Here

    // remove instances with missing class
    Instances data = new Instances(instances);
    data.deleteWithMissingClass();
   
    int numCl = data.numClasses();
    m_Root = new Ridor_node();
    m_Class = instances.classAttribute();     // The original class label
 
    int index = data.classIndex();
    m_Cover = data.sumOfWeights();
View Full Code Here

    m_Discretizer.setAttributeIndices("" + (instances.classIndex() + 1));
    m_Discretizer.setBins(getNumBins());
    m_Discretizer.setInputFormat(instances);
    Instances newTrain = Filter.useFilter(instances, m_Discretizer);

    int numClasses = newTrain.numClasses();

    // Calculate the mean value for each bin of the new class attribute
    m_ClassMeans = new double [numClasses];
    int [] classCounts = new int [numClasses];
    for (int i = 0; i < instances.numInstances(); i++) {
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.