Package weka.core

Examples of weka.core.Instances.numClasses()


      }
     
      // Compute new list of non-empty classes and mapping of indices
      FastVector newClassVals = new FastVector(numNonEmptyClasses);
      int[] oldIndexToNewIndex = new int[newTrain.numClasses()];
      for (int i = 0; i < newTrain.numClasses(); i++) {
        if (notEmptyClass[i]) {
          oldIndexToNewIndex[i] = newClassVals.size();
          newClassVals.addElement(newTrain.classAttribute().value(i));
        }
      }
View Full Code Here


    // remove instances with missing class
    Instances data = new Instances(instances);
    data.deleteWithMissingClass();
   
    int numCl = data.numClasses();
    m_Root = new Ridor_node();
    m_Class = instances.classAttribute();     // The original class label
 
    int index = data.classIndex();
    m_Cover = data.sumOfWeights();
View Full Code Here

  public void testNominal() {
    m_Filter = getFilter();
    m_Instances.setClassIndex(1);
    Instances result = useFilter();
    // classes must be still the same
    assertEquals(m_Instances.numClasses(), result.numClasses());
    // at least one cluster per label besides class
    assertTrue(result.numAttributes() >= m_Instances.numClasses() + 1);
  }

  public void testNumeric() {
View Full Code Here

    getCapabilities().testWithFail(data);
    // remove instances with missing class
    Instances instances =  new Instances(data);
    instances.deleteWithMissingClass();

    m_binaryClassifiers = new DNBBinary[instances.numClasses()];
    m_numClasses=instances.numClasses();
    m_headerInfo = new Instances(instances, 0);
    for (int i = 0; i < instances.numClasses(); i++) {
      m_binaryClassifiers[i] = new DNBBinary();
      m_binaryClassifiers[i].setTargetClass(i);
View Full Code Here

    // remove instances with missing class
    Instances instances =  new Instances(data);
    instances.deleteWithMissingClass();

    m_binaryClassifiers = new DNBBinary[instances.numClasses()];
    m_numClasses=instances.numClasses();
    m_headerInfo = new Instances(instances, 0);
    for (int i = 0; i < instances.numClasses(); i++) {
      m_binaryClassifiers[i] = new DNBBinary();
      m_binaryClassifiers[i].setTargetClass(i);
      m_binaryClassifiers[i].initClassifier(instances);
View Full Code Here

    instances.deleteWithMissingClass();

    m_binaryClassifiers = new DNBBinary[instances.numClasses()];
    m_numClasses=instances.numClasses();
    m_headerInfo = new Instances(instances, 0);
    for (int i = 0; i < instances.numClasses(); i++) {
      m_binaryClassifiers[i] = new DNBBinary();
      m_binaryClassifiers[i].setTargetClass(i);
      m_binaryClassifiers[i].initClassifier(instances);
    }
View Full Code Here

          iindex[1][acount++] = iindex[1][x];
       }
    }

    boolean graftPossible = false;
    double [] classDist = new double[n.numClasses()];
    for(int x = 0; x < n.numInstances(); x++) {
       if(iindex[1][x] > 0 && !n.instance(x).classIsMissing())
          classDist[(int)n.instance(x).classValue()] += iindex[1][x];
    }
View Full Code Here

    for(int x = 0; x < n.numInstances(); x++) {
       if(iindex[1][x] > 0 && !n.instance(x).classIsMissing())
          classDist[(int)n.instance(x).classValue()] += iindex[1][x];
    }

    for(int cVal = 0; cVal < n.numClasses(); cVal++) {
       double theLaplace = (classDist[cVal] + 1.0) / (classDist[cVal] + 2.0);
       if(cVal != leafClass && (theLaplace > leafLaplace) &&
        (biprob(classDist[cVal], classDist[cVal], leafLaplace)
         > m_BiProbCrit)) {
          graftPossible = true;
View Full Code Here

          double minBestLaplace = leafLaplace;
          double minBestVal = Double.NaN;
          double minBestPos = Double.NaN;
          double minBestTotal = Double.NaN;
          double [][] minBestCounts = null;
          double [][] counts = new double[2][n.numClasses()];
          for(int x = 0; x < n.numInstances(); x++) {
             if(n.instance(sorted[x]).isMissing(a))
                break;   // missing are sorted to end: no more valid vals

             double theval = n.instance(sorted[x]).value(a);
View Full Code Here

                }
             }

             // work out the best laplace/class (for <= theval)
             double total = Utils.sum(counts[0]);
             for(int c = 0; c < n.numClasses(); c++) {
                double temp = (counts[0][c]+1.0)/(total+2.0);
                if(temp > minBestLaplace) {
                   minBestPos = counts[0][c];
                   minBestTotal = total;
                   minBestLaplace = temp;
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.