MarkovModel m = new MarkovModel(2,true,true,markovPTAUseMatrix);// w below is to ensure that all elements of the alphabet are included in traces.
Set<List<Label>> plusStrings = buildSet(new String[][] { new String[]{"a","b"},new String[]{"c","u"},new String[]{"w"} },config,converter), minusStrings = buildSet(new String[][] { new String[]{"a","u"} },config,converter);
m.createMarkovLearner(plusStrings, minusStrings,false);
final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B / A-w->M-c->B / T-b->T-u->T","testConstructExtendedGraph5a",config, converter);// the purpose of the w-transition is to ensure transition c is taken into account in graph comparison
MarkovClassifier cl = new MarkovClassifier(m,graph);
Map<CmpVertex, Map<Label, MarkovOutcome>> newTransitions = cl.predictTransitions();
Assert.assertEquals(1,newTransitions.size());
Assert.assertEquals(1,newTransitions.get(graph.findVertex("B")).size());
Assert.assertSame(MarkovOutcome.positive,newTransitions.get(graph.findVertex("B")).get(lblB));